综合勘察技术在岩土工程勘察中的应用

林坚

温州市勘察测绘研究院有限公司 浙江 温州 325000

摘 要:综合勘察技术在岩土工程勘察中具有广泛的应用,通过综合应用多种勘察手段和方法,可以更加全面、准确地对建设场地的地质条件和环境特征进行调查和分析,为工程设计和施工提供科学依据。本文介绍了三种常见的综合勘察技术,包括浅层分辨反射波技术、多瞬态面波技术和横波反射技术,这些技术能够提供丰富的地下信息,帮助工程师了解地下情况,为工程设计和施工提供可靠的依据。

关键词:综合勘察技术:岩土工程勘察:应用

引言:岩土工程是土木工程中的一个重要领域,涉及建筑物的基础设计、施工和监测等方面。在岩土工程中,勘察是必不可少的阶段,它为工程设计和施工提供科学依据。传统的勘察方法往往存在一定的局限性,无法满足现代工程设计和施工的需求。综合勘察技术是一种基于多种勘察手段和方法的集成技术,可以更加全面、准确地对建设场地的地质条件和环境特征进行调查和分析。本文将重点介绍几种常见的综合勘察技术在岩土工程勘察中的应用。

1 岩土工程勘察的主要内容及意义

1.1 岩土工程勘察的主要内容

(1)地质调查,包括对建设场地及其周边地区的地质构造、地层分布、岩土性质和地质历史等方面进行调查和分析。(2)地形地貌调查,了解建设场地及其周边的地形起伏、地貌特征和地形变化等情况。(3)水文地质调查,包括对建设场地及其周边的地下水文地质条件、含水层分布、地下水流向和地下水水质等情况进行调查和分析。(4)工程地质调查,主要对建设场地的工程地质条件进行调查,包括地应力、地质构造、岩体结构、地基承载力和稳定性等方面。(5)岩土工程分析:根据地质调查结果,对建设场地的岩土工程问题进行系统分析和评估,包括地基稳定性、边坡稳定性、地下水对工程建设的影响等。

1.2 岩土工程勘察的意义

(1)保证工程设计和施工的科学性。通过对建设场地的地质条件和环境特征进行全面调查和分析,可以为工程设计和施工提供科学依据,避免或减少工程建设中可能遇到的地质灾害和不利条件。(2)提高工程质量和安全。通过综合应用多种勘察手段和方法,可以准确测定地下不良地质体的位置、规模和性质,为工程设计和施工提供对策和建议,保证建设项目的质量和安全[1]。

(3)降低工程建设成本。通过提前发现和评估工程建设中可能遇到的地质灾害和不利条件,可以避免因地质问题导致的工程返工和延误,降低工程建设成本。(4)确保工程建设的安全性和可靠性。通过对建设场地的地质条件和岩土工程问题进行全面调查和分析,可以提前发现和解决潜在的安全隐患,避免因地质条件或岩土工程问题导致的工程事故。(5)提高工程设计的科学性和合理性。通过对建设场地的地质条件和岩土工程问题进行系统分析和评估,可以为工程设计提供科学依据和合理建议,避免因地质条件或岩土工程问题导致的工程设计不合理。

2 综合物探技术基本原理

综合物探技术是利用地球物理勘探方法,通过对不 同岩土层的物理性质和分布规律的测量和研究, 推断和 掌握岩土工程的地质特征和变化规律。综合物探技术的 基本原理是基于不同岩土层之间的物理性质差异, 如弹 性、密度、磁性、电导率等,这些性质差异会影响电磁 波、声波、地震波等的传播特征和规律。综合物探技术 的优点在于能够快速、准确地获取地下岩土层的分布特 征和变化规律, 为工程设计和施工提供科学依据和基础 资料。同时,综合物探技术还可以对不同的岩土层进行 深入的研究和分析, 为工程设计和施工提供更加详细、 准确的信息。需要注意的是,综合物探技术的应用需要 具备相应的技术水平和经验, 因此在实际应用中, 需要 由专业技术人员进行操作和解释[2]。同时,为了提高综合 物探技术的可靠性和精度,需要结合工程实际情况,选 择合适的物探方法和设备,制定科学的物探方案,并严 格按照相关规范进行操作。

3 综合勘察技术在岩土工程勘察中的应用

3.1 大地电场岩性检测技术

综合勘察技术在岩土工程勘察中的应用非常广泛, 其中包括大地电场岩性检测技术。这种技术是一种基于 地球物理学原理的方法,通过测量地表上的电位差和电 场强度变化,以推断地下岩石的性质和分布。

(1) 该技术可以用于识别不同类型的地下岩石。不 同的岩石具有不同的电导率特性,使用大地电场岩性检 测技术可以测量地表上的电位差和电场强度, 并根据其 变化推断地下岩石的类型。这对于岩土工程设计和施工 非常重要, 因为不同类型的岩石具有不同的力学性质和 稳定性。(2)大地电场岩性检测技术可以提供地下岩石 的分布信息。通过在地表上布设电极并测量电位差和电 场强度的变化,可以推断出地下岩石的形状、厚度和界 面位置等关键信息。这对于确定岩土体的结构和层位非 常重要,为工程设计和施工提供准确的地质数据。(3) 大地电场岩性检测技术还可以用于评估地下水位和含水 层。地下水对岩土工程具有重要影响,通过测量电位差 和电场强度的变化, 可以推断出地下水位的变化和水文 地质条件。这对于确定施工过程中的排水方案和地下水 的稳定性至关重要。(4)大地电场岩性检测技术具有非 侵入性和高效性的特点。相比其他勘察方法,如钻探或 取样,它不需要直接干预地下岩石,而是通过在地表上测 量电位差和电场强度来获取数据。这使得该技术成本较低 且操作简便, 能够快速获得大范围的地下岩石信息。

3.2 浅层分辨反射波技术

该技术利用地震波在不同地下介质中传播时产生的 反射和折射现象,通过采集和分析反射波数据来识别和 分析地下浅层结构。(1)通常使用地震勘探仪器进行 数据采集。这些仪器会产生人工震源,并记录地下介质 对地震波的响应。其中,反射波是最常用的分析对象。 (2) 可以获得丰富的地下信息。首先,通过分析反射 波的到达时间、振幅和频谱等特征, 可以确定地下浅层 的变速层、岩土界面和孔隙等结构特征。这对于工程设 计和施工非常重要,能够帮助确定地基承载能力和选择 适当的基础类型[3]。(3)还可用于确定地下水位和水文 特征。通过分析反射波的特征,可以确定地下水位、水 体厚度和水文特性,对于水资源管理和工程设计具有重 要意义。(4)地下障碍物的探测。通过分析反射波的 变化,可以检测地下的障碍物,如管线、坑洞和废弃物 等。这对于城市规划、管线敷设和环境保护都是非常关 键的。综合勘察技术中的浅层分辨反射波技术在岩土工 程勘察中应用广泛。然而,在实际应用中需要结合其他 勘察手段和专业知识,综合分析各种数据,以确保勘察 结果的准确性和可靠性。

3.3 多瞬态面波技术

该技术利用地震波在地下传播时产生的面波现象,

通过采集和分析多个瞬态面波信号来获取地下的结构信 息。多瞬态面波技术的实施通常需要使用地震勘探仪器 和合适的传感器。(1)人工震源会产生地震波,这些波 将在地下传播,并与不同介质相互作用。接着,传感器 会记录地面上的振动信号,其中包括由面波引起的瞬态 信号。(2)通过分析不同频率的瞬态面波信号,可以确 定地下的剪切波速度分布。这对于岩土体的力学性质和 稳定性评估非常重要。其次,根据瞬态面波信号的传播 时间和幅度变化,可以推断出地下不同层位的厚度和界 面情况,包括土层、岩层和水层等。这有助于确定地下 的层序和地质构造特征。另外, 多瞬态面波技术还可以 用于探测地下隐伏的断层、岩溶洞穴和其他地下空洞, 对工程设计和施工具有重要意义。(3)在实际应用中, 多瞬态面波技术也存在一些挑战。例如,数据处理过程 需要考虑面波的衰减效应以及地下介质的非均匀性。此 外, 合理选择传感器配置、采样参数和数据处理方法也 需要经验和专业知识的支持。

3.4 横波反射技术

(1)通常使用地震勘探仪器进行数据采集。这些仪器会产生人工震源,并记录地下介质对横波的反射响应。横波是指与传播方向垂直的地震波,它在不同介质边界上发生反射和折射,从而提供了地下结构的信息。(2)通过分析横波反射信号的振幅、到达时间和频谱等特征,可以确定地下的岩土界面和层位变化。这对于地质模型的建立和工程设计非常关键。(3)还可用于检测地下障碍物。通过分析横波反射信号的变化,可以识别出地下的管线、洞穴以及其他隐伏的地下空洞。这对于城市规划、管线敷设和工程施工具有重要意义。(4)还可以用于评估地下水文特征。通过分析横波反射信号的特征,可以确定地下水位、水体厚度以及水文特性,为水资源管理和环境保护提供重要依据。然而,在实际应用中需要结合其他勘察手段和专业知识,综合分析各种数据,以确保勘察结果的准确性和可靠性。

3.5 高密度电阻率技术

高密度电阻率技术通常使用电极阵列和电流源进行数据采集。电极阵列由多个电极组成,将电流引入地下,而另一组电极则用于测量地下的电位差。通过控制电流和测量电势,可以计算出地下介质的电阻率分布。(1)根据电阻率数据的分布,可以判断地下不同岩土层的性质和界面情况。不同类型的地质材料具有不同的电阻率值,因此可以通过分析电阻率数据来确定各个层位的厚度、性质和边界。(2)可用于检测地下水体的分布和特征。由于地下水体通常具有较高的电导率,因此在

电阻率测量中会表现为低电阻率区域。通过分析电阻率数据,可以确定地下水体的位置、厚度和水文特征,对于水资源管理和环境保护具有重要意义。(3)用于探测地下隐伏的地下洞穴、管线和其他障碍物。这些障碍物通常会导致电阻率异常,通过分析电阻率数据可以识别它们的存在和位置,为工程设计和施工提供重要依据。在实际应用中需要结合其他勘察手段和专业知识,综合分析各种数据,以确保勘察结果的准确性和可靠性[4]。(4)它能够提供详细的地下结构信息,帮助工程师了解地下情况,为工程设计和施工提供可靠的依据。(5)该技术能够实现非侵入性勘察,不会对地下环境和生态系统造成破坏。(6)高密度电阻率技术具有较高的分辨率和较强的抗干扰能力,适用于各种地质条件下的勘察工作。

3.6 地球物理勘探技术

地球物理勘探技术是一种应用物理原理的勘探方 法,通过测量和分析岩土介质的电磁场、地震波、重力 等物理量来推断出地下岩土的分布、性质和结构。该技 术具有探测深度大、分辨率高、适用范围广等优点,常 被广泛应用于地质勘探、矿产资源调查等领域。(1) 电磁方法是一种常见的技术手段。它利用地下介质对电 磁场的响应特性,通过测量电磁场的强度和相位差等参 数,推断出地下介质的电导率、磁导率等性质。电磁方 法可应用于地下水资源勘探、矿产资源勘查以及环境调 查等方面。(2)它利用地震波在地下的传播特性,通 过记录地震波的横波和纵波信号, 推断出地下介质的速 度、密度和界面等信息。地震勘探可应用于地壳断裂 带、油气田勘探以及地下构造的研究等领域。(3)通过 测量地球重力场的微弱变化, 可以推断出地下岩土的密 度分布。重力勘探可应用于找寻矿产资源、地壳运动研 究以及地下水资源评价等方面。(4)它可以实现较大深 度的探测,对于一些传统勘探方法无法达到的深部信息 提供了重要的补充。(5)地球物理勘探具有较高的分辨 率,能够揭示地下介质的细节和复杂性,为工程设计和 资源调查提供准确的数据支持。此外,该技术适用范围 广泛,可以应用于不同类型的岩土环境和勘探目标。

3.7 数值模拟技术

数值模拟技术是一种基于计算机模拟和分析的方 法,用于研究岩土的力学行为和工程响应。通过建立数 学模型,并借助数值计算方法,可以对岩土体系的物 理过程进行模拟和预测,从而评估工程的安全性和稳定 性。(1)在岩土工程中,数值模拟技术广泛应用于各个 阶段,包括设计、施工和监测等。首先,在设计阶段, 可以使用数值模拟技术来优化结构设计、确定合理的参 数和预测工程的行为。通过建立岩土体系的数学模型, 考虑不同荷载条件下的变形、应力分布和渗流等问题, 可以评估和比较不同设计方案的安全性和效果。(2)在 施工阶段,数值模拟技术可以用于模拟和预测施工过程 中可能出现的问题。例如,可以模拟挖掘、填筑、爆破 等施工活动对周围地层的影响, 以及岩土体的变形、沉 降和稳定性等问题。这有助于制定合理的施工方案、减 少工程风险,并指导实际施工操作。(3)在岩土工程的 监测阶段,数值模拟技术也可以用于解释和分析实测数 据,并对未来的行为进行预测。通过与实际观测结果进 行对比和验证,可以进一步改进数学模型,提高对工程 行为的理解和预计能力。(4)它能够提供详细的工程行 为信息,包括变形、应力分布、渗流等,并能够模拟和 预测不同荷载条件下的响应。

结语:通过综合运用多种勘察手段和方法,能更全面、准确地调查和分析建设场地的地质条件和环境特征,为工程设计和施工提供科学依据。

参考文献

- [1] 陈祥兴.综合勘察技术在岩土工程勘察中的应用 [J].工程建设与设计,2020(17):44-46.
- [2] 孙晋.综合勘察技术在岩土工程勘察中的应用研究 [J].建材与装饰,2020(11):217-218.
- [3] 林刚.综合勘察技术在岩土工程勘察中的应用[J]. 工程技术研究,2020(4):250-251.
- [4] 韩建.综合勘察技术在岩土工程勘察中的应用研究 [J].工程建设与设计,2020(4):43-44.