化工设备压力容器破坏原因及预防分析

党征朝

陕西建工安装集团有限公司 陕西 西安 710001

摘 要:预防压力容器破坏有助于降低维修和更换成本。若发生压力容器的破坏,除了修复或更换容器本身,还可能涉及到其他设备和管道的修复或更换,以及停工和生产中断所带来的经济损失。而通过定期检查和维护,及时处理设备问题,可以避免事故的发生,减少因设备破坏而产生的维修和更换成本,提高生产效率,降低企业经济压力。基于此,本文分析了化工设备压力容器破坏原因及预防策略,以供参考。

关键词: 化工设备; 压力容器; 破坏原因

引言:预防压力容器破坏有助于提高企业的信誉和 形象。工业企业需要时刻关注安全生产,保护员工和环 境,才能得到社会的认可和支持。如果企业忽视对压力 容器安全的预防,导致事故发生,将给企业带来巨大的 声誉和形象损失,可能受到法律责任的追究,甚至导致 企业的倒闭。通过预防压力容器破坏,加强安全管理, 提高企业安全意识,将有助于树立企业良好的形象,增 强企业竞争力。

1 化工设备压力容器的事故特点

化工设备压力容器是工业生产中常见的设备之一, 它承受着工作介质的压力和温度, 承担着重要的安全保 障作用。然而,由于各种原因,化工设备压力容器事故 时有发生,给人员和环境带来了巨大的危害。化工设备 压力容器事故的特点之一是突发性。由于化工生产中的 各种原因,如设备老化、材料缺陷、操作失误等,压力 容器可能会突然发生事故。例如,设备内部的压力超出 了容器的承受范围,导致容器爆炸;压力容器内部介质 的温度超过了设定值,引发危险的化学反应等。这种突 发性使得事故的发生往往只有短暂的时间窗口, 难以及 时做出应对和救援。第二个特点是后果严重。化工设备 压力容器事故一旦发生,常常造成严重的人员伤亡和财 产损失。容器爆炸、泄漏等不仅可能导致周围环境的污 染,还会对设备及周边区域造成破坏。而且,一旦发生 人员伤亡, 其后果不容忽视, 不仅影响受伤人员和家 庭,也对企业的声誉和社会稳定造成严重影响。化工设 备压力容器事故的另一个特点是多元化。事故的原因可 以是多方面的, 既包括设计施工的问题, 也包括材料、 工艺等方面的问题。例如,在压力容器的设计和制造过 程中, 若设计不合理、材料选择不当或制造工艺不规 范,容器的强度和密封性能均会受到影响,增加事故发 生的概率。操作失误、设备维护不当等也是事故发生的 常见原因。

2 化工压力容器破坏的原因及特征

2.1 压力超过承受能力

首先,需要了解化工压力容器的基本结构。化工压 力容器通常由压力壳体、头部和连接件组成。壳体是容 器的主要结构部分,负责承受内部压力。头部则位于容 器的两端,起到封闭和支撑的作用。连接件则用于连接 壳体和头部,确保容器的完整性和安全性。当化工压力 容器内部的压力超过其设计和承受能力时,容器可能会 出现以下几种破坏特征。首先是容器的膨胀。随着内部 压力的增加,容器的壳体可能会呈现圆筒形扩张。这种 膨胀可能会导致容器表面出现凸起、变形以及裂纹的情 况。其次是容器的塑性变形。当压力超过容器的承受能 力时,容器材料可能会发生塑性变形,即形状的永久改 变。这种变形通常表现为容器表面的明显凹陷或凸起。 另一种可能的破坏特征是容器的爆炸。如果压力超过容 器的极限强度,容器可能会发生瞬时破裂,释放大量能 量,形成爆炸。这种破坏往往会造成严重的人员伤亡和 物质损失。要了解化工压力容器破坏的原因,需要考虑 以下几个因素。首先是设计和制造缺陷。如果容器的设 计或制造存在缺陷,如材料强度不足、焊接质量差等, 容器在面对高压时可能容易破坏。其次是操作失误。如 果操作人员在使用化工压力容器时不遵守正确的操作规 程,容器内部的压力可能会超过预定范围,从而引发破 坏。另外,容器的老化和腐蚀也可能导致破坏。长期使 用和不正常维护会使容器内部发生腐蚀, 从而减弱容器 的强度,增加破坏的风险。不安全的压力释放装置也可 能导致容器破坏。当容器内部的压力超过额定范围时, 压力释放装置应及时启动,释放压力以保护容器。如果 这个装置失效或操作不当,容器的承受能力将受到严重 削弱。

2.2 材料失效

首先,压力容器的破坏主要有以下几个原因。首 先,压力过高是导致容器破裂的主要原因之一。当超过 材料的承受能力,容器内部压力超过其承载极限时,就 会发生破裂。其次,容器的材料缺陷或不合格也是常见 的破坏原因。材料本身的缺陷、不合格焊接和裂纹等都 可能导致容器的破坏。此外, 化工压力容器还可能受到 外部冲击和挤压等因素的影响,从而导致破坏。其次, 压力容器的材料失效也是常见的问题。材料失效主要有 两种情况:疲劳失效和腐蚀失效。疲劳失效是由于长时 间的循环加载和应力集中引起的。当容器不断经历重复 的加载和应力集中时,材料会逐渐疲劳,最终导致破 坏。腐蚀失效是由于容器内外介质的腐蚀作用引起的。 化工生产中使用的介质通常具有腐蚀性,长期接触容器 的材料会引起腐蚀,并最终导致材料失效。对于这些破 坏和失效的特征,我们需要密切关注以下几点。首先是 破坏形态的特征。容器的破坏形态可能是爆炸、断裂或 变形等。爆炸破坏通常是由于压力突然增大引起的,容 器会迅速释放能量,引发爆炸。断裂破坏通常是由于材 料的缺陷或应力集中引起的,容器会发生裂纹并最终断 裂。变形破坏可能是由于外部冲击或挤压引起的,容器 会变形失去原有的结构和功能。

其次是材料失效的特征。疲劳失效通常在材料曲线 上表现为疲劳裂纹的扩展,可通过裂纹的形态和分布进 行评估。腐蚀失效通常表现为材料的腐蚀和损失,可以 通过表面的腐蚀程度和材料的厚度进行评估。

2.3 温度过高或过低

首先,温度过高是导致化工压力容器破坏的常见原 因之一。当化工压力容器长时间暴露在高温环境中时, 其内部压力会因温度增加而增加。如果容器承受能力 超过其设计极限,就会出现塑性变形和蠕变现象。塑性 变形是指容器内部材料的形状和结构发生可逆的改变, 而蠕变是指材料在持续加载下会产生非可逆的变形。这 些变形现象会导致化工压力容器失去原有的强度和稳定 性,进而导致破裂和泄漏事故的发生。另外,温度过低 也会对化工压力容器的性能产生严重影响。在极低温条 件下,材料通常会变得脆弱,并丧失其强度和韧性。当 化工压力容器暴露在过低温度下时,如果容器材料没有 足够的抗寒能力,就可能发生脆性断裂现象。这种情况 下,容器内部的压力无法得到有效的支撑,容器就会发 生破裂并导致泄漏事故。除了塑性变形、蠕变和脆性断 裂之外,温度过高或过低还可能引发化工压力容器内部 物质的热胀冷缩问题。当容器内部介质的温度变化时,

容器的体积也会发生相应的变化。而化工压力容器通常 是密封性较好的结构,这就使得容器内部产生的体积变 化无法被迅速、完全地释放掉。在此过程中,容器壁面 会受到内部介质的推力,从而产生应力集中现象。长期 以来,这种应力集中将会导致容器壁面出现裂纹,并最 终发生破裂事故。

2.4 设计或制造缺陷

首先, 化工压力容器的设计缺陷可能会导致强度不 足。当容器内部受到高压力的作用时,设计不合理的结 构或过薄的壁厚可能无法承受压力,导致容器破裂或 爆炸。这种破坏特征往往会引发严重的事故, 危及周围 工人和设备的安全。其次,制造过程中出现的缺陷也可 能导致化工压力容器的破坏。例如,焊接过程中的焊缝 缺陷, 如气泡、裂纹或焊缝不牢固, 会造成容器的强度 和密封性降低,容器在使用过程中可能会发生泄漏或破 裂。如果制造过程中存在金属材料的疏松或内部应力过 大的问题, 也会导致容器的易损性增加, 破坏特征更容 易出现。另外, 化工压力容器设计时忽视了某些关键的 工程因素也是导致破坏特征出现的原因之一。例如,对 于容器内部高温或腐蚀介质的考虑不足,容器材料的选 择可能不能满足实际工作环境的要求。在高温环境下, 容器的材料可能会发生脆化或热膨胀等问题,从而引发 破坏特征。而对于腐蚀介质,容器材料的选用必须考虑 到其对金属的腐蚀性,否则容器内壁可能会出现腐蚀、 脱落等现象,进而影响容器的强度和密封性。

3 预防压力容器破坏的质量控制

3.1 设计规范和标准的遵循

首先,设计规范和标准的遵循是预防压力容器破坏 的基础。设计规范和标准是根据压力容器的使用条件、 工作环境等因素制定的,其中包含了材料选择、结构 设计、安全阀选型等内容。只有严格按照设计规范和标 准进行设计和制造,才能保障压力容器的安全性和可靠 性。设计规范和标准还规定了压力容器的检验和试验要 求,包括压力试验、射线检测等,这些检验和试验措施 能够有效地发现潜在的缺陷,并在投入使用之前加以修 复,确保了压力容器的质量。其次,质量控制是预防压 力容器破坏的关键环节之一。质量控制包括材料的入库 检验、制造过程中的检验和试验, 以及最终产品的检验 和试验等内容。对于压力容器制造过程中的每一个环 节,都应该有相应的质量控制措施和流程,确保每个环 节都符合设计规范和标准要求。例如,在焊接工艺中, 要对焊缝进行无损检测,以保证焊接质量和强度;同 时,进行材料和焊材的化学成分分析,确保材料质量符 合要求。只有通过严格的质量控制,才能消除可破坏因素,增强压力容器的强度和稳定性^[1]。

3.2 材料和制造工艺的控制

首先,对于压力容器的材料选择至关重要。材料应 具有足够的强度和韧性,能够承受内部压力的作用。常 见的材料有碳钢、不锈钢、铝合金等。在选择材料时, 需要考虑容器的使用环境、储存介质的性质, 以及容器 的设计压力和温度等因素。材料的原始质量也需要进行 严格把控,确保不含瑕疵和缺陷。其次,制造工艺对于 压力容器的质量控制至关重要。制造过程中应遵守相关 的标准和规范,严格执行工序要求,确保容器的结构和 密封性能符合设计要求。尤其是焊接工艺,在压力容器 制造中起着至关重要的作用。焊接接头的质量直接关系 到容器的安全性能。因此,焊缝应进行无损检测,确保 焊接质量合格。在质量控制方面,首先,制造企业应制 定严格的质量管理体系,并加强对员工的培训和教育, 提高其质量意识和操作技能。制造过程中应设立相应的 质量检验点,对关键工序进行抽检和全检,确保每一道 工序的质量符合要求[2]。

3.3 检测和监控

首先,对压力容器进行定期的检测是预防破坏的重要手段之一。检测可以发现容器内部的可能存在的缺陷或损伤,如裂纹、腐蚀等。常用的检测方法包括超声波检测、射线检测和磁粉检测等。这些检测方法能够准确地检测出容器内部的问题,并及时采取解决措施,避免因潜在缺陷导致的破坏事故。其次,应建立完善的压力容器的监控系统,对容器的运行状态进行实时监测。监控系统可以通过测量压力、温度和液位等参数,对容器的工作情况进行监控。一旦发现异常情况,如过高的温度或超过承载能力的压力,应立即采取相应的措施,避免事故的发生。监控系统可以采用传感器、仪表等设备进行实时监测,并将数据传输到中央控制室,方便工作人员进行及时处理。建立有效的质量控制措施也是预防压力容器破坏的重要手段之一。首先,应建立完善的容

器设计和制造标准,确保容器的质量达到要求。在制造过程中,应严格执行相关的质量管理体系,并进行必要的检验和试验^[3]。

3.4 维护和操作管理

首先,预防压力容器破坏的重要性不言而喻。压力容器在工业生产中承受着巨大的压力,一旦发生破坏,将会造成严重的人员伤亡和财产损失。因此,企业必须高度重视压力容器的维护工作,定期进行检测和保养,确保其正常运行。其次,维护和操作管理是预防压力容器破坏的关键环节。在维护方面,企业应建立完善的维护制度和工作流程,并配备专业的维护人员。定期检查压力容器的关键部件,包括管道、阀门、密封件等,确保其良好的状态。及时发现和排除隐患,防止可能导致破坏的故障发生。在操作管理方面,企业应加强人员培训和规范操作。操作人员必须具备相关的技能和知识,并熟练掌握操作流程。在操作过程中,严格遵守操作规范,确保操作的安全性和准确性。同时,加强对操作人员的监督和管理,遵循操作规程,不得违反操作安全规定[4]。

结语:综上所述,预防化工设备压力容器破坏的重要性不言而喻。只有加强对压力容器的维护和管理,注重安全预防措施,才能确保生产安全,提高设备的可靠性和使用寿命,降低维修和更换成本,树立企业良好的形象。各工业企业应当高度重视,加强相关管理,为实现可持续发展做出积极贡献。

参考文献

[1]夏菱禹.化工设备压力容器破坏原因与预防研究[J]. 中国设备工程,2023(11):185-187.

[2]张友鹏.化工设备压力容器破坏原因及预防分析[J]. 中国设备工程,2022(13):142-144.

[3]纪贤炎.化工设备压力容器破坏原因及预防分析[J]. 当代化工研究,2021(21):130-132.

[4]滕雪松.化工设备压力容器破坏原因及预防措施[J]. 造纸装备及材料,2020,49(03):24.