煤矿用带式输送机常见故障及预防措施

段慧

新疆煤炭设计研究院有限责任公司 新疆 乌鲁木齐 830091

摘 要:煤矿用带式输送机常见故障如输送带跑偏、打滑和撕裂等,严重影响生产效率和安全性。针对这些问题,预防措施至关重要。除了定期的设备维护和检查,还需优化设备设计,如改进滚筒和托辊的结构,提高输送带的耐磨性和强度。同时,提升操作人员的技能水平和安全意识,确保他们严格按照操作规程进行。维修策略和技术改进同样关键,如采用先进的故障诊断技术,实现快速准确的维修。通过这些综合措施,可以有效预防故障,确保带式输送机的稳定运行,进一步提高煤矿的生产效率和安全性。

关键词:煤矿用带式输送机;常见故障;预防措施

引言:带式输送机作为煤矿物料运输的核心设备,在煤炭开采和运输过程中发挥着不可或缺的作用。凭借其强大的输送能力、简单的结构设计、便捷的维修方式以及零部件的标准化等特点,它已经成为煤矿生产中不可或缺的一环。然而,在长时间、高强度的运行过程中,带式输送机也面临着诸多潜在的故障风险。这些故障不仅可能导致生产效率的降低,更可能对整个生产过程的安全性构成严重威胁。因此,对带式输送机的常见故障有深入的了解,并采取相应的预防措施,对于保障设备的安全稳定运行、提升生产质量、降低运行成本具有极其重要的意义。

1 矿井带式输送机简介

矿井带式输送机是煤矿生产中的重要设备之一,主 要负责将煤炭从采掘工作面运送到地面或其他指定地 点。它以其高效、连续、大容量的特点, 在矿井生产中 发挥着不可替代的作用。矿井带式输送机主要由输送 带、滚筒、托辊、驱动装置、张紧装置、改向装置以及 控制系统等组成。输送带是输送机的核心部件, 承载着 煤炭从起始点到终止点的运输任务。滚筒和托辊则起到 支撑和驱动输送带的作用,使输送带能够平稳、连续地 运行。驱动装置为输送机提供动力,确保输送带能够按 照需要的速度和方向运行。张紧装置则用于调整输送带 的张紧度,保持输送带的稳定运行。改向装置则用于改 变输送带的运行方向,以满足矿井布局的需要。矿井带 式输送机具有运输距离长、运输能力大、运行平稳、维 护方便等优点。它不仅可以实现煤炭的高效运输,还可 以降低生产成本,提高矿井的生产效率。同时,随着技 术的不断进步, 矿井带式输送机的智能化、自动化水平 也在不断提高, 为矿井的安全生产和高效运营提供了有 力保障。然而, 矿井带式输送机在运行过程中也会遇到 一些挑战和问题。例如,由于矿井环境的特殊性,输送带容易受到磨损、撕裂等损伤;滚筒和托辊等易损件也需要定期更换和维护;此外,输送机的控制系统也可能出现故障,影响设备的正常运行[1]。因此,为了确保矿井带式输送机的稳定运行和生产安全,我们需要采取一系列预防措施和维修策略。这包括加强设备的日常巡检和维护、定期更换易损件、优化设备的运行参数、提高操作人员的技能水平和安全意识等。同时,我们还需要关注新技术、新材料和新工艺的发展,不断提高矿井带式输送机的性能和可靠性。

2 煤矿带式输送机常见故障分析

2.1 输送带跑偏

输送带跑偏是带式输送机运行过程中的一个常见而 棘手的问题。当输送带在运行中偏离其预定路径时,不 仅会影响输送效率,还可能导致设备损坏甚至安全事 故。为了深入理解并有效应对这一问题,我们需要仔细 分析跑偏的具体原因。输送带的张紧度是一个关键因 素。如果张紧度不足,输送带在运行时可能会因为缺乏 足够的约束而产生漂移;反之,张紧度过度则可能导致 输送带受到过大的拉力,从而在特定位置产生偏移。这 两种情况都可能导致跑偏现象的发生。滚筒的安装位置 和表面状况也是导致跑偏的重要原因。滚筒作为输送带 的主要驱动和支撑部件,如果其安装位置不准确,或者 表面因为磨损而变得不均匀,那么输送带在与滚筒接触 时就会受到不均匀的摩擦力,从而导致跑偏。托辊的安 装和状态也不容忽视。托辊负责支撑和引导输送带的运 行,如果其安装位置不正确,或者因为长时间使用而损 坏,那么就无法有效支撑和引导输送带,从而导致跑偏 现象的发生。

2.2 输送带打滑

输送带打滑是带式输送机运行过程中的一个显著问 题,它发生在输送带与驱动滚筒之间的摩擦力不足以维 持正常运转时。这种故障不仅会导致输送效率显著下 降,而且由于摩擦产生的热量增加,还可能引发设备过 热,加速设备各部件的磨损,甚至可能因摩擦火花而引 发安全事故。打滑的一个主要原因是驱动装置的功率不 足。当驱动装置提供的动力不足以克服输送带与滚筒之 间的摩擦阻力时,输送带就难以维持正常的运转速度, 从而出现打滑现象。此外,驱动滚筒表面的磨损也是一 个不容忽视的因素。磨损会导致滚筒表面变得光滑,降 低与输送带之间的摩擦系数,从而进一步加剧打滑现 象。除了驱动装置和滚筒的问题,输送带的张紧度也是 一个关键因素。如果张紧度不足,输送带与滚筒之间的 压力就会减小,导致摩擦力不足,进而产生打滑现象。 此外,物料的湿度和粘性也会对打滑产生影响。当物料 湿度过大或粘性过强时,物料容易在输送带上堆积,增 加输送带与滚筒之间的摩擦阻力。这不仅可能导致打滑 现象的发生,还可能引发其他问题,如物料散落、输送 带跑偏等。

2.3 输送带撕裂

输送带撕裂是带式输送机运行中最严重且难以恢复 的故障。撕裂一旦发生,不仅会导致输送机立即停机, 影响生产进度,还可能引发连锁的设备损坏,甚至对操 作人员的安全构成威胁。了解和预防输送带撕裂至关重 要。物料中混入的尖锐物体是导致输送带撕裂的常见原 因。这些物体可能是在物料采集、运输或装载过程中混 入的, 如石块、金属碎片等。当这些物体与高速运行的 输送带接触时,它们就像锋利的刀片一样,能够轻易地 划破输送带的表面,进而引发撕裂。输送带的张紧度设 置不当也是撕裂的一个重要原因。如果张紧度过大,输 送带在受到持续的过度拉伸下,其内部结构可能会受到 破坏, 最终导致撕裂。因此, 合理设置和调整输送带的 张紧度是防止撕裂的关键措施之一。输送带本身的质量 和老化程度也是不容忽视的因素。如果输送带的质量不合 格,或者在长时间使用后老化严重,其强度和耐磨性就会 大大降低,容易受到外界因素的损伤,从而发生撕裂。

2.4 滚筒故障

滚筒故障是带式输送机中常见的问题之一,其主要包括滚筒轴承损坏和滚筒表面磨损等情况。这些故障不仅会影响输送机的正常运行,还可能导致生产效率下降和设备损坏。滚筒轴承的质量和润滑状态是导致轴承损坏的关键因素。如果轴承质量不合格,或者在使用过程中没有得到适当的润滑和维护,就容易出现磨损、疲劳

甚至断裂等问题。这不仅会缩短轴承的使用寿命,还可能对整个滚筒乃至整个输送机系统造成损害^[2]。滚筒表面的磨损也是常见的故障。当滚筒表面磨损严重时,其与输送带之间的摩擦力会减小,导致输送效果下降。这可能是由于物料中的杂质、水分或腐蚀性物质对滚筒表面造成的磨损。此外,长时间的高负荷运行和缺乏适当的维护也会导致滚筒表面磨损。滚筒的安装位置和固定方式也是影响其正常运行的重要因素。如果滚筒安装位置不正确或固定不牢,运行过程中就容易产生振动和偏移,进而导致轴承损坏、滚筒表面磨损等故障。

3 预防措施

3.1 加强设备维护

为了预防带式输送机的常见故障,维护工作至关重 要。这不仅是确保设备持续稳定运行的基础, 更是提高 生产效率、延长设备使用寿命的关键环节。必须高度重 视并采取切实有效的维护措施。定期检查是维护工作的 核心。对于输送带的张紧度和磨损情况,我们应设定合 理的检查周期, 如每周或每月一次, 确保输送带始终处 于良好的工作状态。同时,滚筒和托辊的运行状态也不 容忽视,它们的状态直接影响着输送带的运行平稳性和 使用寿命。及时清理输送带上的杂物和积水同样重要。 物料在输送过程中可能会散落, 而环境中的灰尘和水分 也可能附着在输送带上,这些都会对输送带造成损伤。 因此,我们应定期清理输送带,保持其干净整洁。驱动 装置作为带式输送机的核心部件, 其运行状态直接关系 到整个设备的性能。我们应定期对驱动装置进行检查和 维护,确保其处于最佳工作状态。润滑管理是设备维护 中不可或缺的一环。轴承等部件的润滑状态直接影响着 其运行平稳性和使用寿命。我们应建立完善的润滑管理 制度,定期更换润滑油,确保设备得到充分的润滑。

3.2 优化设备设计

设备设计的合理性在预防带式输送机故障中扮演着 举足轻重的角色。设计阶段,工程师们需要全面深入地 考虑输送机的实际使用环境和工况条件,确保所设计 的设备能够在实际应用中稳定、高效地运行。针对输送 带的选择,我们要充分考虑其耐磨性和强度。不同的物 料、不同的工作环境,对输送带的要求也各不相同。例 如,对于高磨损的物料,我们应选择耐磨性更强的输送 带材料,并适当增加其厚度,以提高其使用寿命。为了 增强输送带的抗撕裂能力,我们还可以在设计中加强其 横向和纵向的加强筋设计。滚筒和托辊的结构设计同样 关键。滚筒与输送带之间的摩擦力直接影响着输送效 果,而托辊的支撑效果则关系到输送带的运行平稳性。 因此,在设计中,我们应优化滚筒的表面材料和处理工艺,提高其摩擦系数;同时,对托辊的排列、间距和材质进行精细化设计,确保它们能够为输送带提供稳定、均匀的支撑。驱动装置的设计也是预防故障的关键。一个功率充足、运行稳定的驱动装置,能够为输送机提供持续、平稳的动力。在设计中,我们要充分考虑工作环境中的温度、湿度和粉尘等因素,选择适当的防护等级和散热设计,确保驱动装置能够在恶劣环境下稳定工作。

3.3 提高操作水平

操作人员的技能水平和安全意识对于带式输送机的 稳定运行具有至关重要的作用。一个训练有素、安全意 识强的操作员能够确保设备在最佳状态下运行, 及时发 现问题并采取有效措施,从而避免或减少故障的发生。 因此,加强对操作人员的培训和教育,提高他们的操作 技能和安全意识,是确保设备稳定运行的关键环节。为 了提升操作人员的技能水平, 我们应定期组织技能培训 活动。这些培训不仅包括理论知识的传授,如设备的结 构、工作原理和常见故障的预防等,还应包括实践操作 的指导。通过让操作员亲自操作设备,熟悉各个部件的 功能和操作要领,他们能够更好地掌握设备的运行规 律,提高处理突发情况的能力。除了技能培训,安全教 育同样不容忽视。我们要加强对操作人员的安全意识教 育, 让他们认识到安全生产的重要性, 并严格遵守安全 操作规程。通过定期的安全教育和培训,提高操作人员 的安全意识和责任心, 使他们能够在工作中时刻保持警 惕,确保设备的安全运行。建立严格的操作规程和检查 制度也是确保设备稳定运行的重要措施[3]。我们要制定详 细的操作规程,明确每个操作步骤和注意事项,确保操 作人员能够按照规范操作设备。同时,我们还要建立定 期的检查制度,对设备进行全面检查和维护,及时发现 并解决问题,确保设备的良好运行。

3.4 维修策略与技术改进

煤矿用带式输送机作为煤炭生产过程中的重要设备,其稳定运行对于煤炭的开采和运输至关重要。然而,由于煤矿环境的特殊性和设备的长期运行,带式输送机常常会出现各种故障。为了保障设备的正常运行,

预防故障的发生,以及提高设备的维修效率和技术水 平,我们需要采取一系列措施。例如,定期检查输送带 的张紧度和磨损情况,及时清理输送带上的杂物和积 水,加强设备的润滑管理等。此外,对于滚筒、托辊等 易损件,要定期更换和维护,确保其处于良好的工作状 态。在维修策略上,我们要建立完善的维修体系。这包 括定期巡检、预防性维修、故障抢修等多个方面。通过 定期巡检,及时发现潜在问题并处理;通过预防性维 修,减少设备故障的发生;在设备出现故障时,要迅速 组织抢修,确保设备尽快恢复运行。在技术改进方面, 我们要不断引进新技术、新材料和新工艺,提高设备的 性能和可靠性。例如,采用耐磨性更强的输送带材料、 优化滚筒和托辊的结构设计、改进驱动装置的性能等。 同时,加强对操作人员的培训和教育,提高他们的技能 水平和安全意识, 也是技术改进的重要方面。煤矿用带 式输送机的常见故障预防、维修策略和技术改进是一个 系统工程。我们需要从多个方面入手,采取综合措施, 确保设备的稳定运行和生产安全。

结语

随着科技的日新月异和工程技术的持续进步,煤矿用带式输送机的设计和制造正迈向新的高峰。新材料的运用、智能化控制系统的引入以及先进的维护技术,使得现代带式输送机不仅更加稳定、高效,而且更加智能化、环保化。我们有理由相信,这些创新和改进将进一步推动煤炭行业的持续发展,提高生产效率,降低能耗和排放,为煤矿的安全生产和环境保护贡献更大力量。随着设备的不断升级换代,煤矿用带式输送机将以其卓越的性能和可靠性,为煤炭行业的繁荣和可持续发展提供坚实的支持。

参考文献

- [1]李刚.煤矿带式输送机常见故障分析及检修措施[J]. 现代工业经济和信息化,2021,11(12):207-208+211.
- [2]赵鹏.皮带输送机常见故障分析及处理方法[J].中国石油和化工标准与质量,2021,41(22):125-126.
- [3]刘晓鹏.煤矿井下带式输送机保护的重要性[J].机械管理开发,2021,36(11):309-310+331.