浅析民用建筑地基基础和桩基础土建施工技术

李 迪 浙江伊麦克斯基础工程有限公司 浙江 杭州 315200

摘 要:本文着重探讨了民用建筑地基基础和桩基础施工技术,这两项技术是确保建筑结构稳固与安全的基石。文章深入剖析了地基基础与桩基础施工技术的应用,详细阐述了施工过程中的关键技术和注意事项。通过本研究,我们旨在为建筑工程项目提供实用的技术指导和参考,确保民用建筑的质量与安全标准得到严格执行,进而为建筑行业的持续健康发展贡献一份力量,共同构建更加安全、稳固的居住环境。

关键词: 民用建筑; 地基基础; 桩基础; 土建施工; 技术

引言:随着城市化步伐的加快和人们对高品质居住环境的追求,民用建筑的建设质量与安全性已成为社会关注的焦点。地基基础和桩基础作为建筑结构的基石,其施工质量直接关系到建筑物的稳固性和安全性能。因此深入研究和掌握民用建筑地基基础和桩基础土建施工技术,对于保障建筑质量、提升居住安全性具有重要意义。本文旨在探讨这些关键技术的应用与实践,以期为建筑行业的持续发展提供有力支撑。

1 民用建筑基础土建施工的重要性

1.1 保障建筑结构的稳固性

民用建筑基础土建施工的首要任务是确保建筑结构的稳固性。建筑结构稳固性的好坏直接关系到建筑的使用寿命和安全性能。一个稳固的地基基础能够均匀地分散建筑上部结构的重量和荷载,防止因地基沉降、变形等原因导致的建筑物受损或坍塌。通过精心设计和施工,基础土建能够有效地支撑整个建筑,使其在各种环境条件下都能保持稳定。在基础土建施工过程中,需要充分考虑地质条件、土壤性质、地下水位等因素,确保基础设计与实际情况相符。同时,还需要采用合适的施工技术和材料,如钢筋混凝土结构、桩基础等,以提高基础的承载力和稳定性。只有这样,才能确保建筑结构的稳固性,为建筑的安全使用提供有力保障。

1.2 提高建筑的抗震性能

地震是民用建筑面临的主要自然灾害之一。在地震发生时,建筑物的抗震性能将直接影响到居住者的生命安全和财产安全。提高建筑的抗震性能是民用建筑基础土建施工的重要目标之一。良好的地基基础能够有效地提高建筑的抗震性能。在基础设计时,需要充分考虑地震力的作用,采取相应的抗震措施。如在基础底部设置隔震层、在基础与上部结构之间设置减震器等,以减小地震对建筑物的影响[1]。并且在基础施工过程中,还需要

严格控制施工质量,确保基础结构的完整性和稳定性。 此外在民用建筑基础土建施工中,还需要充分考虑建筑 的布局和结构形式。通过合理的建筑布局和结构设计, 能够减小地震力对建筑的影响,提高建筑的抗震性能。 例如采用对称的布局、避免结构上的突变等,都能够有 效地提高建筑的抗震性能。

1.3 确保建筑的安全性

民用建筑基础土建施工的重要性还体现在确保建筑 的安全性上。在建筑使用过程中,各种因素都可能导致 建筑的安全性受到威胁。如地基沉降、变形、裂缝等 问题都可能导致建筑结构的破坏和坍塌。因此在民用建 筑基础土建施工过程中,需要采取一系列措施来确保建 筑的安全性。第一,需要选择合适的基础类型和施工方 法。根据地质条件和建筑要求,选择适合的基础类型和 施工方法,能够确保基础结构的稳定性和安全性。例如 在地质条件较差的地区,可以采用桩基础或沉井基础等 深基础形式来提高基础的承载力和稳定性。第二,需要 严格控制施工质量。在基础施工过程中,需要按照设计 要求和施工规范进行操作,确保施工质量符合标准。如 在混凝土浇筑过程中,需要控制混凝土的配合比、浇筑 速度和养护条件等,以确保混凝土的强度和耐久性。第 三,需要加强基础的维护和检测。在建筑使用过程中, 需要定期对基础进行维护和检测,及时发现和处理基础 问题。例如,对地基沉降、变形等问题进行监测和记 录,及时采取补救措施,防止问题扩大化。

1.4 促进社会的稳定和发展

民用建筑基础土建施工的重要性还体现在其对社会 稳定和发展的促进作用上。首先,一个稳固的地基基础 能够确保建筑的安全使用,减少因建筑倒塌等事故导致 的人员伤亡和财产损失,从而维护社会的稳定。其次, 良好的地基基础能够提高建筑的使用寿命和安全性能, 降低建筑维修和改造的成本,减少社会资源的浪费。最后,民用建筑基础土建施工的发展还能够带动相关产业的发展,如建筑材料、施工机械等产业,促进经济的繁荣和发展。

2 民用建筑地基基础土建施工技术

2.1 地质勘察

地质勘察是民用建筑地基基础施工的首要步骤,其目的是了解地基的地质情况、土壤性质等信息,为地基设计提供依据。(1)地形地貌调查:通过实地踏勘,了解地形地貌特征,包括地形起伏、河流、湖泊、山丘等自然地理条件。这些条件对于地基的稳定性和承载力有重要影响。(2)地质构造分析:通过钻探、物探等手段,了解地下岩层的分布、厚度、产状等地质构造特征。这些特征决定了地基的承载能力和稳定性。(3)土壤性质测试:通过取土样进行室内试验,测定土壤的物理力学性质,如密度、含水量、压缩性、抗剪强度等。这些性质是地基设计的重要依据。(4)地下水位探测:通过观测井或钻探等方式,了解地下水位的变化规律和分布情况。地下水位的高低对地基的稳定性和施工难度有重要影响。

2.2 基础设计

基础设计是民用建筑地基基础施工的关键环节,其 设计质量直接影响到地基的承载能力和稳定性。基础设 计主要包括以下几个方面:第一,基础类型选择:根据 地质勘察结果和建筑荷载要求,选择合适的基础类型[2]。 常见的地基基础类型包括浅基础和深基础。浅基础适用 于地质条件较好、荷载较小的建筑; 深基础适用于地质 条件较差、荷载较大的建筑。第二,基础尺寸确定:根 据建筑荷载和地基承载力,确定基础的尺寸和形状。基 础尺寸应满足承载力和稳定性的要求,同时考虑施工方 便和经济性。第三,基础埋深确定:基础埋深是指基础 底面至自然地面的距离。基础埋深应根据地质条件、地 下水位、冻土深度等因素确定,以确保基础的稳定性和 抗冻性。第四,基础材料选择:基础材料应满足强度、 耐久性和施工要求。常用的基础材料包括混凝土、砖、 石等。在选择材料时,应充分考虑其性能特点和适用范 围。基础设计应充分考虑各种因素,确保设计的合理性 和可行性。并且设计人员应具备丰富的专业知识和实践 经验, 以确保设计的准确性和可靠性。

2.3 开挖与回填

开挖与回填是民用建筑地基基础施工的重要环节, 其施工质量直接影响到地基的稳定性和承载能力。(1) 开挖施工:开挖施工应按照设计要求进行,确保开挖深 度和尺寸符合要求。在开挖过程中,应注意保护周边环境和地下管线等设施。并且应根据地质条件采取相应的支护措施,防止边坡失稳和坍塌。(2)排水处理:在开挖过程中,应做好排水工作,防止积水影响施工进度和质量。可以设置排水沟、集水井等设施,及时排除积水。(3)夯实处理:开挖完成后,应对基础底面进行夯实处理,提高基础的密实度和承载能力。夯实方法可采用机械夯实或人工夯实等方式。(4)回填施工:回填施工应采用合适的材料和方法,确保回填质量。回填材料应具有良好的压实性和稳定性,如砂土、碎石等。在回填过程中,应分层填筑并逐层夯实,确保回填密实度符合要求。

2.4 基础施工

基础施工是民用建筑地基基础施工的最后阶段,也是最重要的阶段。基础施工的质量将直接影响到建筑物的稳定性和安全性。首先,浅基础施工:浅基础施工主要包括混凝土浇筑和砖砌等方法。在浇筑混凝土前,应确保模板的平整度和尺寸符合要求,并检查钢筋的布置和连接情况。浇筑过程中应注意控制混凝土的浇筑速度和振捣质量,确保混凝土的密实度和强度。砖砌基础应注意砖的规格、质量和砌筑质量,确保基础的平整度和稳定性。其次,深基础施工:深基础施工主要包括桩基础和沉井基础等方法。桩基础施工应注意选择合适的桩型和打桩机械,并严格控制打桩质量和桩身质量。沉井基础施工应注意井壁的稳定性和井底的处理质量,确保基础的承载能力和稳定性。

3 民用建筑桩基础土建施工技术

3.1 桩型选择

桩型的选择是桩基础施工的首要步骤,它直接决定了桩基础的承载能力和稳定性。(1)地质条件:地质条件是选择桩型的重要依据^[3]。不同地质条件下的土壤性质、地下水位、岩层分布等因素都会影响桩基础的施工和性能。因此在选择桩型时,应详细了解地质勘察报告,分析地质条件对桩基础的影响。(2)建筑荷载:建筑荷载是选择桩型的关键因素。根据建筑物的类型、用途和规模等,可以计算出建筑物的总荷载和分布荷载。这些荷载将直接作用在桩基础上,因此桩型的选择应满足建筑荷载的要求。(3)工期要求:工期要求也是选择桩型时需要考虑的因素。不同的桩型具有不同的施工速度和效率。在选择桩型时,应根据工期要求合理安排施工进度,确保施工质量和工期要求得到满足。常见的桩型包括预制桩、灌注桩等。预制桩具有施工速度快、质量稳定等优点,适用于工期紧、质量要求高的工程;灌

注桩则具有适应性强、承载力高等优点,适用于地质条件复杂、土壤承载力不足的工程。

3.2 打桩施工

打桩施工是桩基础施工的关键环节,它直接决定了 桩身的垂直度和打入深度等关键指标。第一, 桩位测量 和定位: 桩位测量和定位是打桩施工的前提。根据设 计图纸和现场实际情况,采用全站仪、经纬仪等测量工 具进行桩位测量和定位。并且应设置明显的标志桩或标 线,以便后续施工。第二,打桩机械选择:打桩机械的 选择应根据桩型、桩长和地质条件等因素确定。常用的 打桩机械包括柴油锤、液压锤等。在选择打桩机械时, 应确保其功率、性能等满足施工要求。第三,打桩质量 控制: 打桩过程中应严格控制桩身的垂直度和打入深度 等关键指标。通过调整打桩机械的参数和操作方法,确 保桩身垂直度符合要求;同时应根据地质勘察报告和试 桩结果确定合理的打入深度, 确保桩基础的承载能力和 稳定性。第四,安全措施:打桩施工属于高空作业和重 型作业,存在一定的安全风险。因此,在施工过程中应 严格遵守安全操作规程,采取相应的安全防护措施,确 保施工人员的安全。

3.3 注浆施工

对于灌注桩等需要注浆的桩型,注浆施工是关键环节。首先,注浆材料选择:注浆材料的选择应根据地质条件、桩型和注浆要求等因素确定。常用的注浆材料包括水泥浆、水泥砂浆等。在选择注浆材料时,应确保其性能稳定、流动性好、强度高等特点。其次,注浆压力和注浆量控制:注浆压力和注浆量是注浆施工的关键参数^[4]。注浆压力应根据地质条件和桩型等因素确定,确保注浆材料能够充分填充桩身与土壤之间的空隙;注浆量应根据桩长和桩径等因素计算确定,确保注浆质量符合要求。最后,注浆养护和检测:注浆完成后应进行必要的养护和检测。养护期间应保持注浆材料处于湿润状态,防止于裂和龟裂等现象;同时应进行注浆质量检

测,确保注浆质量符合要求。

3.4 桩身检测

桩基础施工完成后,需对桩身进行质量检测。桩身检测的目的是评估桩基础的承载能力和稳定性,确保桩基础的质量和安全。(1)检测方法选择:桩身检测的方法有多种,包括低应变反射波法、高应变动力试桩法等。在选择检测方法时,应根据桩型、地质条件和检测要求等因素确定合适的检测方法。(2)检测设备和人员要求:桩身检测需要使用专业的检测设备和仪器,如声波检测仪、动力试桩机等。检测人员应具备相应的专业知识和实践经验,能够准确判断桩身的质量和性能。(3)检测结果分析和处理:检测结果应进行详细的分析和处理。对于不合格的桩基础,应采取相应的补救措施或重新施工;对于合格的桩基础,应进行记录和归档,以备后续工程使用。

结语

民用建筑地基与桩基础施工,是建筑稳固的基石。 在实际操作中,必须恪守施工规范,确保技术的精准与 可靠,从而保障建筑的安全与持久。同时随着科技的 日新月异,我们应积极寻求创新,探索先进的施工技术 和方法,为民用建筑基础工程的发展注入新动力。这不 仅是对建筑质量的追求,更是对人民生命财产安全的负 责,推动建筑行业持续、健康、稳定的发展。

参考文献

- [1]彭麟.建筑地基与桩基础在施工中存在的问题及优化策略[J].工程技术研究,2019,4(03):239-240.
- [2]李德锋,李妍丽.高层建筑中土建施工技术的应用分析[J].绿色环保建材,2019(04):162-163.
- [3]林久.关于民用建筑地基基础和桩基础的施工技术的探讨[J].福建建材,2019(05):63-64.
- [4]孔庆灿.民用建筑桩基础施工技术管理[J].住宅与房地产,2019(04):169-172.