基于BIM技术的水利水电管道工程设计与管理研究

吕天明

新疆兵团水利水电工程集团有限公司 新疆 乌鲁木齐 835000

摘 要: 随着信息技术的飞速发展, BIM (Building Information Modeling, 建筑信息模型)技术在水利水电工程领域的应用日益广泛。本文旨在探讨BIM技术在水利水电管道工程设计与管理中的应用,分析其优势、技术要点及实施策略,以期为提升水利水电管道工程的设计效率、施工质量和管理水平提供理论支持和实践指导。

关键词: BIM; 水利水电管道工程; 设计; 管理

引言

水利水电工程作为国民经济的基础设施,对于水资源的合理利用和防洪排涝具有重要意义。管道工程作为水利水电工程的重要组成部分,其设计与管理直接关系到工程的安全性和经济效益。然而,传统的设计与管理方法存在信息传递不畅、协同效率低等问题。BIM技术以其三维建模、信息集成和协同工作的优势,为解决这些问题提供了新的途径。

1 BIM 技术概述

BIM技术是一种基于三维模型的数字化建筑设计和管理方法,它通过集成多种信息源和工具,包括CAD软件、数据库、工程计算和可视化等,将建筑设计与施工过程中的各个环节紧密连接起来,实现对建筑物全生命周期的信息管理和优化。

2 BIM 技术在水利水电管道工程设计中的应用要点

2.1 可视化设计

BIM技术的核心优势之一是其强大的可视化设计能 力。在水利水电管道工程中, 传统的二维设计图纸往往 难以直观、全面地展示管道的布局、走向、连接方式以 及与其他工程结构的空间关系。而BIM技术通过构建三 维模型,能够真实、准确地模拟管道工程的实际状况, 使得设计人员、施工人员、项目管理人员以及业主等非 专业人员都能够直观地理解设计方案。在可视化设计的 过程中, BIM技术不仅展示了管道的外观形态, 还能够 通过模型内部的属性信息,如管道材质、规格、压力等 级等,为设计方案的优化提供数据支持。例如,设计人员 可以利用BIM模型进行管道的水力计算,分析不同管道布 局对水流状态的影响,从而选择最优的设计方案。同时, BIM模型还支持多视角、多层次的查看和剖切功能, 使得 设计方案的细节部分也能够得到充分的展示和讨论[1]。此 外, BIM技术的可视化设计还能够促进设计过程中的沟通 与协作。在传统的设计方式中,由于二维图纸的信息表 达有限,设计人员之间往往需要通过大量的文字描述和 口头沟通来解释设计方案。而BIM模型则能够作为一个共 同的工作平台,使得不同专业、不同部门的设计人员能 够在同一个模型上进行操作和讨论,从而大大减少了设 计过程中的误解和冲突。

2.2 信息集成与共享

在水利水电管道工程的设计阶段,信息的集成与共享是提升设计效率和质量的关键。BIM技术通过集成多种设计相关的信息源,为设计人员提供了一个高效、准确的信息平台。在设计初期,BIM模型作为信息的载体,开始集成管道的几何形态、初步材料选择、设计规范等基础信息。随着设计的深入,更多的详细信息如管道的尺寸、材质、压力等级、连接方式等都被添加到BIM模型中。这些信息在设计过程中不断被更新和完善,确保设计的准确性和完整性。除了几何和材料信息,BIM模型还可以集成其他设计相关的数据,如水流模拟结果、结构分析数据等。这些数据为设计人员提供了全面的设计信息,帮助他们更好地理解和优化设计方案。例如,通过水流模拟结果,设计人员可以分析不同管道布局对水流状态的影响,从而选择最优的设计方案。

2.3 协同工作

在水利水电管道工程设计中,多专业、多部门的协同工作是确保设计方案全面、准确的关键。BIM技术为这一协同过程提供了强大的支持,通过集成化的平台,实现了设计信息的实时共享和更新,有效减少了设计冲突和重复工作。传统的设计方式往往存在信息传递不畅、专业间沟通困难等问题,导致设计方案在后期施工中出现大量变更和返工。而BIM技术的协同工作功能,使得不同专业、不同部门的设计人员可以在同一个模型上进行操作,实时查看和编辑设计信息,确保设计方案的统一性和协调性。在协同工作过程中,BIM技术通过权限管理功能,实现了对设计信息的有效控制和保护。不同专

业、不同部门的设计人员只能访问和编辑其权限范围内的设计信息,避免了信息的误操作和泄露。同时,BIM技术还支持设计信息的版本管理,每次修改都会生成新的版本记录,方便设计人员进行历史追溯和对比。此外,BIM技术还提供了丰富的协同工作工具,如在线会议、实时聊天、任务分配等,使得设计人员可以更加便捷地进行沟通和协作。这些工具的应用,不仅提高了设计效率,还增强了设计团队之间的凝聚力和合作精神。

2.4 模拟分析

在水利水电管道工程设计中,模拟分析是优化设计 方案、提前发现潜在问题的重要手段。BIM技术通过高级 模拟功能,能够对施工过程和运行状况进行精确模拟, 帮助设计人员在设计阶段就预见到可能遇到的问题,并 及时进行优化。利用BIM技术进行模拟分析,可以对管 道的水力特性进行模拟,包括水流速度、压力分布等。 通过模拟不同工况下的水流状态,设计人员可以评估管 道的输送能力,发现可能存在的水流阻塞、压力过高等 问题,并据此对管道布局、管径选择等进行优化[2]。除了 水力特性模拟, BIM技术还可以进行结构强度模拟。在管 道工程中, 管道的支撑结构、连接方式等都需要经过精 确计算以确保其安全性。通过BIM模型,设计人员可以对 这些结构进行模拟分析,评估其在不同工况下的受力状 态,发现潜在的结构弱点,并进行相应的加强设计。此 外, BIM技术还可以进行施工过程的模拟。通过模拟实际 施工过程中的吊装、焊接、安装等步骤,设计人员可以 预见到可能遇到的施工难题, 如空间冲突、施工顺序不 合理等。这些问题在设计阶段得到识别后,可以及时调 整设计方案,避免在实际施工中造成延误和损失。

3 BIM 技术在水利水电管道工程设计中的应用优势 分析

一是设计理念创新:BIM技术使得水利水电管道工程设计从传统的二维图纸转向三维模型,实现了设计理念的创新。设计人员可以通过BIM模型直观展示管道布局、材料选择、连接方式等,便于各方理解和沟通,提高设计方案的可行性和满意度。二是设计效率提升:BIM技术通过直接建立三维动态模型,减少了二维图纸绘制和三维建模的中间环节,提高了设计效率。同时,BIM模型中的信息关联性强,一处修改即可自动更新相关部分,避免了重复劳动和错误传递。三是设计质量优化:BIM技术提供了强大的模拟分析功能,可以对管道工程的水力特性、结构强度、施工难度等进行模拟分析,提前发现潜在问题并进行优化。此外,BIM技术还可以进行碰撞检测,确保设计方案在实际施工中的可行性。

4 BIM 技术在水利水电管道工程管理中的应用

4.1 材料核算与成本管理

在水利水电管道工程管理中,材料核算与成本管理 是确保项目经济效益的关键环节。BIM技术通过精确的材 料统计和实时的使用跟踪, 为这一管理过程提供了强大 的支持。具体而言, BIM技术能够基于管道工程的三维 模型,精确统计出所需的各种材料数量,包括管道的长 度、直径、材质,以及支撑结构、连接件等。这些信息 对于材料采购计划的制定至关重要,可以帮助项目管理 人员准确预测材料需求,避免采购过多或过少导致的浪 费和延误。同时, BIM模型中的信息关联功能使得材料使 用情况可以实时跟踪。在施工过程中,每当有材料被使 用或消耗, BIM模型都会自动更新, 反映出最新的材料 状态。这样,项目管理人员就可以随时掌握材料的实际 使用情况,与计划进行对比,及时发现并解决潜在的浪 费和损失问题。此外, BIM技术还支持材料成本的动态管 理。通过与财务管理系统的集成, BIM模型可以实时更新 材料成本信息,包括采购价格、运输费用、税费等。这 使得项目管理人员能够随时了解材料成本的变化情况, 为成本控制和预算调整提供准确的数据支持。这些功能 共同作用于项目管理的全过程,帮助项目管理人员实现 材料的有效控制和成本的最优化, 从而提升项目的整体 经济效益。

4.2 施工进度管理

在水利水电管道工程管理中,施工进度管理是确保 工程按期完成的关键环节。BIM技术通过结合施工进度 计划, 生成4D施工模拟动画, 为施工进度管理提供了直 观、精确的工具。具体而言, BIM技术能够将施工进度计 划与三维模型相结合,生成4D施工模拟动画。这个动画 能够直观地展示施工进度的整个过程,包括各个施工阶 段的开始和结束时间,以及关键节点的完成情况。管理人 员可以通过观看这个动画,对施工进度有一个全面、清晰 的认识。在施工过程中, BIM技术还支持实时进度的跟踪 和更新。通过与施工现场的实时数据连接, BIM模型能够 实时反映施工进度的实际情况[3]。管理人员可以随时查看 模型的进度状态,与计划进行对比,及时发现并解决进 度偏差问题。此外, BIM技术还支持施工进度的动态调 整。当实际进度与计划发生偏差时,管理人员可以在BIM 模型中进行相应的调整,重新制定施工进度计划。这个 新的计划会立即反映在4D施工模拟动画中,帮助管理人 员直观地了解调整后的施工进度情况。这些功能使得管 理人员能够实时掌握施工情况,及时发现并解决进度问 题,确保工程按期完成。通过BIM技术的应用,水利水电

管道工程的施工进度管理变得更加精确、高效和可控。

4.3 质量管理

在水利水电管道工程管理中,质量管理是确保工程 质量和安全的重要环节。BIM技术通过集成施工过程中的 各种质量信息,为质量管理提供了全面、精确的支持。 具体而言, BIM技术能够将施工过程中的各种质量信息, 如检测记录、验收报告、材料证明等, 与三维模型进行 关联。这样,管理人员就可以通过BIM模型,随时查看 和追溯施工过程中的质量信息,确保施工质量的可追溯 性。在施工过程中, BIM技术还支持实时的质量检测和控 制。通过与施工现场的质量检测设备连接, BIM模型能够 实时更新质量检测数据,反映施工质量的实际情况。管 理人员可以随时查看模型的质量检测状态,与标准进行 对比,及时发现并解决潜在的质量问题。此外,BIM技术 还支持质量问题的分析和处理。当发现质量问题时,管 理人员可以在BIM模型中进行标注和记录, 并关联相关 的质量信息和图片。这样,就可以对质量问题进行全面 的分析,找出问题的根源,并制定相应的处理措施。同 时,BIM模型还可以记录质量问题的处理过程和结果,为 今后的质量管理提供经验和教训。通过BIM技术的应用, 水利水电管道工程的质量管理变得更加精确、高效和可 控,为工程的顺利实施和长期运行提供了有力保障。

4.4 运维管理

在水利水电管道工程的运维管理中,BIM技术提供了一个数字化的管理平台,实现了对管道工程全生命周期的精细化管理。通过集成运维过程中的各种信息,如设备运行数据、维护记录、故障报告等,BIM技术为运维人员提供了全面的数据支持,极大地提高了运维效率和服务质量。具体而言,BIM模型能够实时集成和更新设备运行数据,包括水流速度、压力、温度等关键指标。运维人员可以通过监控这些数据,及时发现设备运行中的

异常状况,并进行预警和处理,从而避免潜在的安全隐患。同时,BIM模型还集成了维护记录和故障报告等信息。运维人员可以通过模型快速查找历史维护记录和故障处理情况,为当前的运维工作提供有价值的参考。此外,运维人员还可以在模型中标注和记录新的维护活动和故障处理过程,实现运维知识的积累和传承。在故障排查和维修指导方面,BIM技术也发挥了重要作用^[4]。运维人员可以利用模型进行虚拟巡检,模拟设备运行和故障情况,从而更准确地定位故障点。同时,模型还可以提供详细的维修指导和操作步骤,帮助运维人员快速、准确地完成维修任务。通过实时监控设备运行数据、集成维护记录和故障报告、以及提供故障排查和维修指导等功能,BIM技术极大地提高了运维效率和服务质量,为水利水电管道工程的长期稳定运行提供了有力保障。

结语

BIM技术在水利水电管道工程设计与管理中的应用具有显著优势,能够提升设计效率、优化设计方案、提高施工质量和管理水平。未来,随着BIM技术的不断发展和完善,其在水利水电工程领域的应用将更加广泛和深入。建议相关企业和研究机构加强BIM技术的研发和应用推广,为水利水电工程的高质量发展贡献力量。

参考文献

[1]蔺宏岩,张意宁.BIM技术在水利工程全周期建设中的应用[J].云南水力发电,2023,39(12):268-271.

[2]孙中晋.基于BIM技术的水利管道工程成本核算方法研究[J].水利技术监督,2020,(06):75-77+81.

[3]高柯.BIM技术在水利工程建设与管理中的应用[J]. 城市建设理论研究(电子版),2024,(15):212-214.

[4]刘利兵,袁丽.BIM技术应用于水利工程设计的实践探讨[J].电气技术与经济,2024,(05):98-100.