环境监测中地表水监测现状分析研究

李建钊 李 濠 吴文晖 湖南省生态环境监测中心 湖南 长沙 410014

摘 要:对地面水域的监测是确保水质安全、健全环境监管架构的关键环节,本文先阐述地表水监测的内容与意义,指出其对完善环境监测体系、保障用水安全意义重大,接着剖析现状,提出优化措施,包括实施全面质量控制、加强重视程度、引进创新监测技术、完善监测和评价标准等方面,通过这些措施可以提升地表水监测质量,为环境保护和可持续发展提供有力支持。

关键词:环境监测:地表水监测:现状:措施

引言

地表水监测是环境监测的重要组成部分,对于保障 民众用水安全、完善我国环境监测体系具有重要意义, 然而当前地表水监测面临诸多挑战,如重视程度不够、 技术落后等,本文分析了地表水监测的现状及问题,并 提出相应的优化措施,以期为地表水环境的保护和改善 提供参考。

1 地表水监测的内容及意义

不同时期的地表水监测重点也有所不同,每月的1 日至10日为全国地表水监测的重点时段,不同的监测对 象需要采取不同的监测手段, 在河流中, pH值、DO、 COD、氨氮废水、镉浓度、铅含量、石油种类和温度 变化等均是监测河流的重点项目。在观测水库、湖泊之 前,应在观测河流内容的基础上再对水位、透明度、总 磷和总氮等加以监测,而地表水环境监测的作用主要有 以下二大点,一是加强提升我国地表水监测工作的水 平,为有效健全我国的环境监测制度,在国家环境监测 中,积极研究地表水监测中出现的新问题并对之改善, 有效提高监测技术和能力,推动和发展我国环境监测系 统的建设; 二是对地表水的监控能够在一定程度上降低 水域环境污染,提高人们的饮水安全,在人们的日常活 动中, 水质是至关重要的, 一旦水体遭遇破坏, 就会严 重干扰着人类的工作与日常生活,还可能引起各种病症 的出现[1]。我国是一个长期依靠发展产业促进经济成长的 发展中国家, 自然环境也因此受到了很大的破坏, 水体 环境污染已经形成了一种很严重的社会现象, 伴随着人 民生活水平的提升,居民对饮用水质量的要求也越来越 大, 而城市污水处理厂的规模则根本适应不到我们的生 活需要, 所以监测我国的地表水可以有利于降低对水体 环境污染,保障人们的用水安全。

2 环境监测中地表水监测的现状

2.1 对地表水不够重视

地表水是我国主要的自然资源, 为我国的发展建设 带来了巨大的利益,然而地表水的控制是环境监测中非 常关键的一个工作,许多公众却缺乏对它的关注,这 种忽视不仅体现在公众意识层面,也深刻反映在政策制 定、资源配置及执行力度等多个维度。从公众角度来 看,许多人缺乏对环境问题的深刻认识,对地表水污染 的严重性和紧迫性认识不足,导致在日常行为中缺乏节 水意识和水资源保护行动; 在政策层面, 尽管近年来国 家和地方政府出台了一系列关于环境保护和水资源管理 的法律法规, 但在具体执行过程中, 由于监管不严、执 法不力等问题, 使得这些政策往往难以落到实处, 地表 水监测工作的优先级也因此被相对降低。资金、人力和 物力的短缺是地表水监测工作面临的直接困境,由于重 视程度不够,相关部门在分配资源时往往更倾向于其他 看似更为紧迫或更具经济效益的项目,导致地表水监测 在资金投入、人员配备、设备更新等方面长期处于匮乏 状态,这种资源不足不仅限制了监测工作的广度和深 度,也严重影响了监测数据的准确性和时效性,使得地 表水污染的预警、评估和治理工作难以有效开展。地表 水监测工作的滞后,不仅威胁到人类的饮水安全,还可 能引发一系列连锁反应,对生态环境也造成深远影响, 一旦地表水受到污染, 其中含有的有害物质可能通过饮 水、灌溉、养殖等途径进入食物链,对人类健康构成直 接威胁,这些污染物还可能随地下径流扩散至更广泛的 区域,造成地下水污染,进一步加剧水资源短缺问题, 破坏水生生态系统,影响生物多样性,导致整个生态系 统的失衡。

2.2 环境分析水平较低

在开展地表水监测时,无机污染物、微生物、重金 属离子等指标构成了水质评估的基本框架,这些指标的 变化直接反映了水质状况的好坏以及潜在的环境风险, 部分环境监测机构在执行监测任务时, 往往过于关注数据的获取和实验室分析, 却忽视了室内分析以及科室研究中仪器设备的更新与维护, 这不仅限制了监测数据的准确性和可靠性, 更在无形中降低了环境分析的整体水平。由于仪器设备的更新换代滞后, 从而导致综合分析的水平较低, 这不仅体现在对新型污染物的识别与监测上, 更反映在对水质变化趋势的预测与评估上, 由于缺乏先进的分析手段和仪器设备, 监测机构往往只能对数据进行简单的统计分析, 而无法深入挖掘水质变化的内在规律和潜在风险, 无法满足公众对于环境质量信息的深度需求, 更难以为决策者提供科学、全面的决策支持。目前地表水监测项目中仅对有关数据进行了简单评估, 而无法对环境污染所产生的影响因素、水体变化态势等作出合理评价, 也就无法实施进一步的地表水监测活动。

2.3 监测数据无法达到标准

在环境监测的实践中, 地表水监测数据的代表性被 赋予了极高的重要性,它要求这些数据能够全面且准确 地描绘出监测区域地表水的实际状况,包括水质状况、 污染程度以及生态健康等多个核心维度。然而大部分监 测单位在实际开展地表水监测工作时, 所获取的数据往 往未能达到预期的精准度,这一现象隐藏着复杂多样的 原因,其中,监测人员的专业能力和经验不足是一个尤 为突出的因素,环境监测是一项对专业性要求极高的工 作,它不仅要求从业人员具备深厚的专业知识,还需要 他们拥有丰富的实践经验,以灵活应对各种复杂多变的 现场情况。在实际中, 部分监测人员可能因缺乏必要的 培训和实战经验,导致在采样、分析等关键环节出现偏 差,进而严重影响了数据的准确性和可靠性。监测标准 水平偏低也是制约地表水监测数据精准度的另一大因 素,随着科技的飞速发展和环境问题的日益复杂化,传 统的监测技术和方法可能已经难以满足当前的需求,监 测标准制定的滞后,导致在实际操作中即使监测到了某 些异常指标, 也可能因为缺乏相应的评价标准和限值而 无法做出有效的判断和响应。

3 优化地表水监测措施的方法

3.1 地表水监测过程中实施全面质量控制

水样采集是地表水监测的基石,鉴于地表水体的复杂性,水样样本包含多种源于自然过程或人为活动的物质成分,若仅对采集的水样直接分析,可能因样本特殊性或代表性不足使分析结果与实际情况偏差较大,所以水样采集阶段就要实施严格质量控制措施,选择能真实反映监测区域水质状况的采样点,采用合适采样容器与

保存方法,避免水样在采集、运输和储存中发生物理、 化学或生物变化影响后续分析结果。在水样分析过程 中,要充分关注样本里各类物质,地表水中污染物种类 繁多,分析时需采用科学方法和技术手段准确测定各类 污染物,还要注意排除悬浮物、溶解氧等可能影响监测 结果的干扰因素,为此可运用过滤、沉淀、稀释等预处 理技术去除或降低其影响[2]。实施适当的监测干预,根据 监测目的和样本特性综合选择合适分析方法,通过调整 pH 值、温度、光照等条件优化分析条件以消除或减小外 界因素对分析结果的影响, 以及定期校准仪器确保其精 度和稳定性,毕竟不同分析方法对同一水样结果可能不 同,仪器也会直接影响分析结果准确性。为了保证地表 水监测数据的准确性和可靠性,还需建立完善的监测质 量管理体系,制定详细监测计划、建立严格监测标准和 操作规程、实施定期质量控制和监督等,通过这些举措 确保监测各环节符合科学、规范要求,进而得出准确、 可靠的监测数据。

3.2 加强重视程度

在环境监测工作中, 地表水监测占据着举足轻重的 地位, 为了促使环境监测中地表水监测工作得以有序、 高效地进行, 我们必须从根本上对这一工作的重视程 度,采取切实有效的措施来加以保障。第一,加强人力 资源投入、财力资源投入以及物力资源投入,我们应当 根据实际需求, 合理调配资源, 确保监测工作在各个环 节上都能得到充分的支持,在人力资源方面,应加大对 专业监测人员的引进和培养力度,提升监测团队的整体 素质和技术水平; 在财力资源方面, 应设立专项基金, 用于支持监测设备的更新升级、监测技术的研发创新以 及监测人员的培训教育; 在物力资源方面, 则应注重监 测设施的完善和维护,确保监测工作能够在一个良好的 环境中进行。第二,制定科学合理的数据标准和技术标 准,这些标准不仅为监测工作提供了明确的指导和依 据,也能够在一定程度上保证监测结果的准确性和可靠 性, 因此我们应结合实际情况, 制定出一套既符合国际 标准又适应我国国情的地表水监测标准体系,并在实践 中不断加以完善和优化,还应加强对监测人员的培训和 教育,确保他们能够熟练掌握并严格执行这些标准。第 三,建立有效的奖惩机制,对于在地表水监测工作中表 现突出、成绩显著的工作人员, 我们应给予充分的肯定 和奖励,这不仅可以提升他们的工作热情和归属感,也 能够为其他工作人员树立榜样,形成良好的工作氛围, 而对于在工作中存在失职、渎职等行为的工作人员,应 依法依规进行严肃处理。第四,加强宣传工作,我们应

通过多种渠道和形式,如媒体宣传、社区讲座、公益活动等,向公众普及地表水监测的重要性和必要性,以及保护水资源、减少污染的具体措施,这不仅能够增强公众的环保意识和节水意识,促进他们在日常生活中养成良好的用水习惯和环保行为,还能为地表水监测工作营造一个良好的社会氛围和舆论环境。

3.3 积极引进与创新监测技术

在地表水环境监测技术上,必须意识到自己监测技 术和西方发达国家先进监测技术之间的巨大区别,我们 必须保持更加开放与宽容的态度,并主动吸纳西方发达 国家的先进监测技术,这些技术已经通过了长时间的实 际测试并进一步优化,已经验证了在地表水监测方面的 高效率与准确度,通过吸纳这些技术,我们才能够尽快 提高自己的监测水平, 为地表水环境监测的质量保障带 来更为强大的技术保障。遥感技术监测是一个十分新型的 监测方法,它通过对水体污染物反射的波长能量来表征水 体污染物的分布与含量,通过利用对内陆水体的遥感技术 监测,我们能够把经验研究结果和环境参数相结合,对水 质状况实现全方位、有效的监控,同时遥感技术还可以有 助于人们认识环境在不同空间下的作用,为环境制定政策 更加科学合理的改善措施提供有力保障[3]。生物监测则是 通过观察生物对环境污染变化所产生的反应,来判断水 污染的程度,这种方法具有直观、灵敏、经济等优点, 能够为我们提供及时、准确的监测信息,像鱼、水藻等 生物都可以作为生物监测的指示生物,它们的生长状 况、行为习性等都可成为判定水污染程度的重要依据。 还需要加强投入的研发力量, 主动开发较为领先的监测 设备与工艺,这不但能提高我国在地表水监测领域的自 主创新能力,还可以降低对外来科技的依赖性,减少投 入成本,在自主开发的过程中,也必须强调科技的应用 性与创新能力,使所开发的技术能够真正满足地表水监 测的需求,并具有较大的准确性与稳定性。

3.4 积极完善水质量的监测和评价标准

水资源质量监测影响着人们生活质量水平的提升, 同时也对人们的生命健康有着极为关键的影响。因为我

国国土辽阔, 所以水质监控工作任务比较繁重, 在进 行水质监测与分析的过程中就需要对地表水质监测标准 和评估规范进行建立与完善,从而对水环境质量状况进 行整体分析,同时需根据区域划分的实际情况,对重点 区域的水质状况着重关注。在实际的环境与饮用水安全 监测中,会因为测量的错误而对某一个区域进行重复性 测量,导致监测资金出现损失,为了防止此类情况的出 现,必须强化有关生态环境部门与地方水利监督部门之 间的协同, 合理优化监测站网的设置, 努力实现以流域 管理部门为中心的全方位监控网络覆盖,根据实际状况 选择最具有典型性的断面加以适当布局, 确保水质的真 实情况得到合理反映。目前,我国水污染问题日趋严 重,需加强有关单位人员对地表水环境监测的关注度, 为防止因人员自身能力问题造成地表水监测工作的干 扰,应不断加强相应的技术培训,并通过计算机软件收 集相关资料信息,将数据传送到各监测机构,通过网络 监测的手段使地表水监测技术得到提升, 使其监测精度 得到提高,针对各个区域实际状况的不同,实施针对性 的水质污染防治政策,形成与地方经济社会发展相匹配 的管理机制, 使水资源监控得到高效开展。

结语

综上所述, 地表水监测工作对于保障水资源质量、促进环境可持续发展具有关键作用, 通过实施全面质量控制、加强重视程度、引进创新监测技术以及完善监测评价标准等措施, 可以有效提升地表水监测的准确性和可靠性, 相信通过各方共同努力, 能切实提高地表水监测水平, 让地表水更好地服务于社会发展, 守护好我们的生态环境与用水安全, 实现人与自然和谐共生。

参考文献

[1]李秀芳,杨春雪,张少红.我国环境检测中地表水监测现状及进展研究[J].资源节约与环保,2020,(04):62.

[2]李秋玲.环境监测中地表水监测现状分析[J].中国资源综合利用,2020,38(03):148-150.

[3]郑钦文.环境监测中地表水监测的现状与进展探讨 [J].环境与发展,2020,30(08):138-139.