基于数字化技术的电力工程施工安全管理模式创新

施志远

上海东捷建设(集团)有限公司 上海 200122

摘 要:通过探讨了基于数字化技术的电力工程施工安全管理模式创新。随着科技的飞速发展,数字化技术正逐步渗透到电力工程施工安全管理的各个环节。本文通过分析数字化技术在风险预警、人员安全管理、应急响应及信息整合等方面的应用,提出一套全新的电力工程施工安全管理模式。该模式不仅提高安全管理的效率和准确性,还实现安全管理的智能化和自动化,为电力工程施工的安全稳定提供有力保障。

关键词: 数字化技术; 电力工程; 施工安全管理; 模式创新

1 数字化技术在电力工程施工安全管理中的应用基础

1.1 数字化技术概述

数字化技术,作为21世纪信息技术的重要组成部分,是指利用计算机技术将模拟信号转化为数字信号,并通过算法和数据处理技术对信息进行存储、传输、分析和应用的过程。这一技术不仅极大地提高了信息的处理速度和准确性,还实现了信息的远距离实时共享,为各行各业的现代化管理提供了强有力的支持。在数字化技术的框架下,大数据、云计算、物联网、人工智能等新兴技术得以蓬勃发展,它们共同构成了数字化时代的核心驱动力。在电力工程施工安全管理领域,数字化技术的应用主要体现在对施工现场各类数据的实时采集、处理和分析上。通过安装传感器、摄像头等智能设备,可以实时监测施工现场的安全状况,如人员活动、设备运行状态、环境因素等。利用云计算和大数据技术,可以对这些海量数据进行深度挖掘和分析,及时发现潜在的安全隐患,为施工安全管理提供科学依据。

1.2 电力工程施工安全管理需求分析

电力工程施工安全管理是确保电力设施建设和运维过程中人员安全、设备完好和工程顺利进行的关键环节。随着电力工程的规模不断扩大、复杂度日益提高,施工安全管理面临着前所未有的挑战。一方面,施工现场环境复杂多变,人员流动频繁,设备种类繁多,给安全管理带来了极大的难度;另一方面,传统的人工监管方式存在效率低下、反应滞后等问题,难以满足现代电力工程施工安全管理的需求[1]。电力工程施工安全管理迫切需要引入数字化技术,以提高安全管理的智能化、自动化水平。通过数字化技术的应用,可以实现施工过程的全面监控和预警,及时发现并处理安全隐患,减少安全事故的发生。数字化技术还可以为施工安全管理提供数据支持,帮助管理人员做出更加科学、合理的决策,

从而提高整个施工过程的效率和安全性。

2 数字化技术在电力工程施工安全管理中的应用潜力

2.1 物联网技术

物联网技术作为数字化技术的重要组成部分, 其在 电力工程施工安全管理中的应用潜力巨大。物联网技术 通过无线传感器、RFID标签、智能设备等手段,将施工 现场的各类设备、人员、环境等要素连接起来, 形成一 个庞大的信息网络。这个信息网络能够实时采集和传输 施工现场的各种数据, 为施工安全管理提供全面、准确 的信息支持。在电力工程施工中,物联网技术可以应用 于多个方面。首先,通过安装传感器,可以实时监测施 工现场的设备运行状态,如温度、压力、振动等,及时 发现设备故障或异常情况,避免设备损坏或安全事故的 发生。其次,物联网技术可以实现对施工现场人员的实 时跟踪和定位,确保人员安全。另外,物联网技术还可 以应用于施工现场的环境监测,如温度、湿度、空气质 量等,为施工人员提供一个安全、舒适的工作环境。物 联网技术的应用不仅提高了施工安全管理的效率和准确 性,还降低了人力成本和安全风险。通过实时监控和预 警,管理人员可以及时发现并处理安全隐患,避免安全 事故的发生。物联网技术还可以为施工安全管理提供数 据支持,帮助管理人员做出更加科学、合理的决策。

2.2 大数据技术

大数据技术在电力工程施工安全管理中的应用同样 具有广阔的前景。大数据技术通过收集、存储、分析和 应用海量数据,可以揭示出数据背后的规律和趋势,为 施工安全管理提供有力的支持。在电力工程施工中,大 数据技术可以应用于多个环节。首先通过收集施工现场 的各类数据,如人员活动数据、设备运行状态数据、环 境监测数据等,可以建立起一个庞大的数据集。然后利 用大数据技术对数据进行深度挖掘和分析,可以发现数 据之间的关联性和规律性,为施工安全管理提供科学依据。大数据技术还可以应用于施工过程中的质量控制和进度管理。通过对施工数据的实时监测和分析,可以及时发现施工过程中的质量问题或进度延误情况,提醒管理人员采取相应的措施进行调整和优化。这不仅可以提高施工效率和质量,还可以降低施工成本和安全风险。大数据技术的应用需要依赖强大的数据处理和分析能力,在电力工程施工安全管理中,需要建立起一个完善的大数据平台,配备专业的数据处理和分析人员,以确保大数据技术的有效应用[2]。

2.3 人工智能技术

人工智能技术在电力工程施工安全管理中的应用同 样具有巨大的潜力。人工智能技术通过模拟人类的思维 和行为,可以实现对施工现场的智能化监控和管理。在 电力工程施工中,通过图像识别和机器学习等技术,可 以实现对施工现场的实时监控和预警。例如,利用摄像 头和图像识别技术,可以实时监测施工现场的人员活动 情况,一旦发现异常行为或安全隐患,立即触发报警系 统。通过机器学习算法,可以对施工数据进行深度挖掘 和分析,发现潜在的安全隐患和风险点。工智能技术还 可以应用于施工过程中的自动化控制和管理。人工智能 技术还可以应用于施工过程中的质量控制和进度管理, 通过智能化的算法和模型,对施工过程进行精确的控制 和优化。人工智能技术的应用需要依赖先进的算法和模 型,以及强大的计算能力和数据处理能力。因此在电力 工程施工安全管理中,需要建立起一个完善的人工智能 系统,配备专业的技术人员进行系统的开发和维护。

2.4 BIM技术

BIM (建筑信息模型)技术在电力工程施工安全管理中的应用同样具有广阔的前景。BIM技术通过构建三维模型,将施工现场的各类信息集成在一起,形成一个完整的建筑信息模型。在电力工程施工中,BIM技术可以应用于多个方面。首先,通过构建三维模型,可以直观地展示施工现场的布局和设备配置情况,帮助管理人员更好地了解施工现场的情况。其次,BIM技术可以应用于施工过程中的碰撞检测和冲突分析。通过模拟施工过程,可以发现设备之间的碰撞或冲突情况,提前采取相应的措施进行调整和优化。这不仅可以避免施工过程中的安全隐患,还可以提高施工效率和质量。另外,BIM技术还可以应用于施工过程中的进度管理和质量控制。通过模拟施工过程,可以预测出施工过程中的关键节点和潜在风险点,提醒管理人员采取相应的措施进行调整和优化。BIM技术还可以实现对施工质量的实时监测和分析,确保

施工质量的符合标准和要求。BIM技术的应用需要依赖专业的软件和工具,以及强大的计算能力和数据处理能力。在电力工程施工安全管理中,需要建立起一个完善的BIM系统,配备专业的技术人员进行系统的开发和维护。同时还需要加强对BIM技术的培训和应用推广,提高管理人员和施工人员的BIM技术应用能力。

3 基于数字化技术的电力工程施工安全管理创新模式构建

3.1 数字化风险预警与防控体系

在电力工程施工安全管理中,构建数字化风险预警 与防控体系是创新模式的关键一环。该体系利用物联 网、大数据、人工智能等先进技术,实现对施工现场各 类风险的实时监测、预警和防控,从而有效降低安全事 故的发生概率[3]。数字化风险预警与防控体系的核心在于 数据的收集与分析。通过部署各类传感器和智能设备, 如温度传感器、压力传感器、振动传感器等,实时采集 施工现场的环境参数、设备状态及人员活动数据。这些 数据经过大数据技术的处理与分析, 能够揭示出潜在的 安全隐患和风险点。例如,通过分析设备运行数据,可 以预测设备的故障趋势,提前安排维修或更换;通过分 析人员活动数据,可以识别出违章作业行为,及时进行 纠正和教育。在风险预警方面,数字化风险预警与防控 体系能够设定安全阈值和风险等级,一旦实时监测数据 超过阈值或达到风险等级,系统立即触发预警机制,通 过短信、邮件、APP推送等多种方式向管理人员和作业 人员发送预警信息。系统还能根据风险等级自动采取相 应的防控措施,如启动应急预案、关闭危险区域等,确 保施工现场的安全。数字化风险预警与防控体系还能实 现风险的动态管理和持续改进。通过持续收集和分析数 据,不断优化预警模型和防控策略,提高预警的准确性 和防控的有效性。体系还能记录每次预警和防控的过程 及结果,为未来的安全管理提供数据支持和经验借鉴。

3.2 智能化人员安全管理系统

智能化人员安全管理系统是电力工程施工安全管理 创新模式的另一重要组成部分。该系统利用物联网、人 脸识别、定位技术等手段,实现对施工现场人员的实时 跟踪、定位和管理,确保人员安全。智能化人员安全管 理系统首先需要对施工现场人员进行身份认证和登记, 建立人员信息数据库。通过人脸识别技术,系统能够自 动识别进出施工现场的人员,并记录其进出时间和位置 信息。系统还能利用定位技术实时跟踪施工现场人员的 活动轨迹,确保人员始终处于安全区域。在人员安全管 理方面,智能化人员安全管理系统能够设定安全区域和 危险区域,一旦人员进入危险区域或离开安全区域,系统立即触发报警机制,提醒管理人员和作业人员注意安全。系统还能根据人员的活动轨迹和时间信息,分析人员的作业效率和疲劳程度,为管理人员提供决策支持。智能化人员安全管理系统还能实现人员培训和教育的智能化。通过虚拟现实(VR)、增强现实(AR)等技术,系统能够为作业人员提供身临其境的培训体验,提高培训效果。系统还能记录每次培训的过程和结果,为未来的培训提供数据支持和改进方向^[4]。

3.3 数字化应急管理平台

数字化应急管理平台是电力工程施工安全管理创新 模式中应对突发事件和紧急情况的重要工具。该平台利 用大数据、云计算、人工智能等技术,实现对施工现场 突发事件的实时监测、预警、响应和处置,确保施工现 场的安全稳定。数字化应急管理平台首先需要对施工现 场的各类突发事件进行识别和分类,建立突发事件数据 库和应急预案库。通过大数据分析技术,系统能够预测 各类突发事件的发生概率和影响程度, 为管理人员提供 决策支持。系统还能根据突发事件的类型和级别, 自动 选择相应的应急预案,启动应急响应机制。在应急响应 方面,数字化应急管理平台能够实现信息的快速传递和 共享,一旦突发事件发生,系统能够立即向管理人员、 作业人员和相关机构发送预警信息, 提醒他们采取相应 的应急措施。系统还能实时收集和分析应急响应过程中 的数据,为管理人员提供实时的应急指挥和调度支持。 数字化应急管理平台还能实现应急资源的智能化配置和 调度,通过云计算技术,系统能够实时掌握各类应急资 源的数量和位置信息,根据应急响应的需求自动配置和 调度资源,确保应急响应的及时性和有效性。

3.4 一体化安全信息管理平台

一体化安全信息管理平台是电力工程施工安全管理 创新模式中的核心组件。该平台通过整合各类安全信息 和数据资源,实现对施工现场安全管理的全面监控和管 理,提高安全管理的效率和准确性。一体化安全信息管 理平台首先需要对施工现场的各类安全信息和数据进行 收集和整合。这些信息包括人员信息、设备信息、环境 信息、风险信息等。通过大数据技术和云计算技术,系 统能够对这些信息进行深度挖掘和分析,揭示出潜在的 安全隐患和风险点。在安全监控方面,一体化安全信息 管理平台能够实现对施工现场的全面监控。通过实时监 控和分析各类安全信息和数据,系统能够及时发现并处 理安全隐患和风险点,确保施工现场的安全稳定[5]。系 统还能根据监控结果自动生成安全报告和统计图表,为 管理人员提供直观的安全管理信息。一体化安全信息管 理平台还能实现安全管理的智能化和自动化,通过人工 智能技术,系统能够自动识别和分类安全信息和数据, 并根据预设的规则和算法自动采取相应的管理措施。例 如,系统能够自动识别出违章作业行为并自动发送报警 信息给管理人员; 能够自动分析设备运行状态并预测设 备故障趋势等。这些智能化和自动化的管理措施能够大 大提高安全管理的效率和准确性。

结束语

基于数字化技术的电力工程施工安全管理模式创新 具有重要意义。通过整合物联网、大数据、人工智能等 先进技术,构建了一个全面、高效、智能的安全管理体 系。未来,随着数字化技术的不断发展和完善,我们有 理由相信,电力工程施工的安全管理将更加智能化、精 细化,为电力行业的可持续发展奠定坚实基础。

参考文献

- [1]田文颖.数字经济时代背景下企业经济管理模式的规范化策略探究[J].现代商业,2021(34):156-158.
- [2]董博.企业数字化管理实践探究[J].全国流通经济, 2023(4):36-39.
- [3]厉锋军.建设工程项目管理中BIM技术的融合与应用[J].商品与质量,2020,(27):111,174.
- [4]杨晓楠.信息化管理软件在监理企业中的推广及成果分析[J].建设监理,2020(07):43-45.
- [5]曹晓虹.新时期监理企业向咨询企业转型发展的途径研究[J].时代经贸,2020(19):12-13.