农田水利节水灌溉工程的建设与管理

古力尼沙·热合木 库尔勒市水利局水利综合服务中心 新疆 库尔勒 841000

摘 要:随着全球气候变化和水资源日益紧张,农田水利节水灌溉工程已成为现代农业可持续发展的关键措施之一。我国农田水利节水灌溉工程在不断的发展中,虽然取得了很大的进步,但就目前情况而言,依然存在诸多问题,而这些问题的存在给农田水利灌溉工程建设造成了阻碍,影响工程发挥应有的效用。基于此,文章对农田水利节水灌溉工程的建设与管理进行探讨,不仅可改善当下农业灌溉需要,并且可使农民获得理想的收益。

关键词:农田水利;节水灌溉;设施管理;可持续发展

1 农田水利节水灌溉工程概述

农田水利节水灌溉工程是指通过一系列技术措施和设施建设,合理配置水资源,降低水的使用量,同时确保农作物生长所需的水分供给,以实现农业生产的可持续发展。随着水资源的日益紧张和农业对水资源的依赖,节水灌溉已成为提高水资源利用效率、确保农业灌溉需求、提升农业生产力和保护生态环境的重要手段。

1.1 农田水利节水灌溉工程的特点

①精准控制: 节水灌溉系统可以实现水量的精准控制,通过智能化设备(如滴灌、喷灌系统等)按需供水,避免了传统灌溉方式的浪费。②多样化技术: 根据不同的作物需求和土壤特性,采用不同的节水灌溉技术,如滴灌、微喷灌溉、地下灌溉等。③高效利用水资源:通过精确的水量调节,能够最大限度地减少水分蒸发和流失,确保水资源的高效利用。④自动化与智能化:现代节水灌溉系统大多具备自动化控制功能,可以通过传感器和智能控制系统,实现灌溉过程的自动化管理,进一步提高水资源使用的精确度。

1.2 优势

①节约水资源:节水灌溉技术通过减少水的浪费,使得水资源得到更加有效的利用,尤其在水资源紧缺的地区尤为重要。②提高农作物产量:精确的水分供应可以更好地满足作物的生长需求,提高农作物的产量和质量。③减少劳动强度:自动化的灌溉系统减少了人工干预,提高了灌溉工作的效率,降低了劳动力成本。④提升水土保持能力:通过减少水流的冲刷,节水灌溉有助于提高土壤的结构,减少水土流失。

作者简介: 古力尼沙·热合木,出生于1974年06 月,女,维吾尔族,新疆巴音郭楞自治州库尔勒市人, 本科,工程师,研究方向:农田水利工程。

2 农田水利节水灌溉工程建设关键技术

农田水利节水灌溉工程的建设涉及多个技术环节, 其核心是通过科学合理的技术手段,充分利用水资源, 提高水的使用效率。以下将从节水灌溉技术、水资源利 用与管理以及农田水利设施建设三个方面,详细探讨其 关键技术。

2.1 节水灌溉技术

节水灌溉技术是农田水利节水灌溉工程的核心技 术, 目的是在保证作物生长所需水分的前提下, 减少水 资源的浪费。首先是滴灌技术。通过滴头直接将水分输 送到作物根部,水分的释放非常精确,能够最大限度地 减少蒸发和渗漏。节水效果显著,水分供应均匀,有助 于减少土壤的盐碱化,并提高作物的生长质量。广泛应 用于水果、蔬菜、经济作物等对水分要求较高的农业生 产。其次是微喷灌溉技术。通过微型喷头将水分喷洒在 作物根部的表层,模拟降水,保证作物所需的水分。适 用于中等水需求的作物,能够均匀覆盖大面积,减少水 分的蒸发和流失,以及适合于温带和干旱地区的农业生 产,如大田作物和果树种植。另外是地下灌溉技术。将 灌溉管道埋在土壤表层以下,直接向土壤内部输送水 分,减少水分蒸发。水分直接供给植物根部,减少蒸发 和地表水流失,适用于沙漠和干旱地区,广泛应用于草 坪、高端园林、温室种植等领域。另一方面是调节灌溉 技术。根据天气、土壤湿度等条件自动调节灌溉量,实 现精准供水。通过自动化系统提高灌溉效率,避免过度 灌溉或灌溉不足, 其适用于大规模农业种植、温室和果 园等。灌溉系统的智能控制技术:采用传感器、遥控、 自动化控制系统,通过气象数据、土壤湿度、作物水分 需求等信息来控制灌溉时间和水量。提高灌溉精准度, 减少人工干预,能够有效节约水资源,适用于高科技农 业和现代化农业设施。

2.2 水资源利用与管理

有效的水资源利用和管理是确保节水灌溉工程取得 长远效益的关键。其包括以下几个方面:

第一,水源优化与配置。对不同水源(如河流、水库、地下水等)进行科学调配,优先利用可再生水源。 对灌溉水源的开发与利用需要评估其可持续性,避免水资源的过度开采。

第二,雨水收集与利用技术。在干旱或降水量较少的地区,收集并储存雨水作为灌溉用水是一种有效的节水措施。通过屋顶收集、雨水池等设施,减少对常规水源的依赖。

第三,水质管理与水处理技术。在水资源管理中,水质的保护至关重要。通过水质监测与处理,确保水源不受到污染,从而保证灌溉水的质量。常用的水处理技术包括过滤、沉淀、消毒等。

第四,水量控制与分配系统。水资源的合理分配是确保节水效果的基础。通过建立先进的水量控制系统,实现水资源的精确调度。常见的控制方式有自动化调节阀、遥控开关、流量计等设备。

第五,灌溉用水效率监测。利用传感器、数据分析等 技术实时监测灌溉水的使用情况,调整灌溉量,确保每一 滴水都能充分发挥作用,从而提升水资源的利用率。

第六,节水与环境保护相结合。水资源的管理不仅 要考虑水的节约,还要与生态环境保护结合,避免过度 开采和污染水源,确保生态平衡。通过绿色灌溉措施和 生态恢复手段,促进农业的可持续发展。

2.3 农田水利设施建设

农田水利设施是实施节水灌溉工程的基础设施,涉 及从水源到农田的水输送和分配系统。关键技术包括: ①灌溉管网建设:包括输水管道、分水器、喷头、滴头 等设施。灌溉管网的设计应根据不同地区的地理环境、 作物需求及水源情况,采用合理的管道布置与技术。材 料选择采用耐腐蚀、抗压强度高的材料,如PVC、PE 管道等,确保系统长时间稳定运行。②水库与蓄水池建 设:在水源充足的地区,建设水库或蓄水池用于储存多 余的水资源,以应对旱季或水资源不足的情况,通过合 理的水库管理和水质保护,确保水资源的稳定供应。③ 水泵与动力设备: 高效的水泵和动力系统能够保证水源 的顺畅输送。特别是在大规模灌溉系统中,需要选择节 能高效的水泵,以减少能源消耗和运营成本。④智能化 监控与管理系统:通过智能化水利设施管理系统,实时 监控水位、水流量、灌溉状态等数据, 确保灌溉系统的 高效运行,常用的智能设备包括水位监测传感器、流量 计、温湿度传感器等。⑤抗旱与抗灾设施建设:在缺水地区,除了节水灌溉设施外,还应建设应对干旱等自然灾害的备用设施,如地下水井、引水渠道等,以确保应急灌溉需求。这些技术的实施,确保了农田水利节水灌溉工程的高效性、经济性与可持续性,并为农业发展提供了重要保障。

3 农田水利节水灌溉工程管理与运行

3.1 灌溉计划制定与实施

3.1.1 灌溉计划制定的重要性

灌溉计划是节水灌溉工程的核心,其指导着水资源的调度、灌溉量的控制以及作物的水分需求保障,灌溉计划能够确保水资源的合理配置,避免水源浪费和过度消耗。通过准确计算作物的用水需求、土壤水分状况以及气候变化,能够精确制定出合适的灌溉时间和水量。合理的灌溉计划避免过量灌溉和灌溉不足,能够最大限度地提高水的利用率,确保作物生长所需水分得到保障,同时减少水资源的浪费。灌溉计划的优化能够通过控制灌溉时间,避免高峰时段或不必要的电力消耗,从而降低能源成本。

3.1.2 灌溉计划实施的关键步骤

首先,水源评估与需求分析。评估水源的持续供应能力,包括水量、来源和供水稳定性,其中要考虑雨季和干季的变化,以及水源的分布情况,确保灌溉期间水源的供给不短缺。分析水源水质,确保水中的溶解物质(如盐分、污染物)不会对作物造成不良影响。若水质差,可能需要采取水处理措施。通过历史数据和气象预测,分析水源的季节性变化趋势,确保在不同季节能够调节灌溉量以适应水源变化。而不同作物的水分需求差异较大,需要根据作物的生长周期、蒸腾量等因素,估算出最佳灌溉需求。例如,粮食作物如小麦和玉米的需求与水果类作物如葡萄和苹果有所不同。土壤的水分保持能力影响灌溉量的设定。砂土的排水性较好,需频繁灌溉;而粘土土壤则保持水分的能力较强,但也容易积水,因此需控制灌溉频率和水量。

其次,土壤湿度监测。安装土壤湿度传感器,在土壤不同深度进行测量。传感器可以帮助实时跟踪土壤的水分状况,为灌溉决策提供准确的数据支持。可通过无线通信技术(如物联网技术)将传感器数据上传至中央管理平台,使管理人员能够远程查看土壤湿度变化,并进行灌溉调控,精准的土壤湿度监测可以防止过度灌溉,避免水资源浪费和作物根系问题。此外,分析土壤湿度数据,结合作物需求和气候变化趋势,自动生成灌溉建议。通过系统反馈,能够及时调整灌溉量。提供警

报系统,当土壤湿度低于设定阈值时,自动通知操作人员进行灌溉,确保土壤不会出现过度干旱。

另外,灌溉周期设定与灌溉时间安排。灌溉周期设定:灌溉周期应根据作物生长的不同阶段进行调整。例如,苗期需频繁灌溉,生长中期则可以适当减少灌溉频率,而成熟期则根据作物的水分需求和气候进行调节。根据土壤湿度、作物需求和气候条件,制定日灌溉、周灌溉或间歇性灌溉计划,使用动态调整机制,使灌溉周期随着环境变化而优化。灌溉时间安排:避免在高温时段(如中午12点至下午3点)进行灌溉,减少水分的蒸发损失,最好安排在早晨或傍晚,这样有利于作物吸收水分,减少水分流失。晴朗天气时,灌溉应考虑气温和风速因素,避免强风和过高温度导致水分快速蒸发。

另一方面,反馈与调整机制。灌溉计划应该是动态的,在实施过程中需要根据作物的生长状态、土壤湿度变化和气候条件的变化进行反馈和调整。系统可以通过实时传感器数据、天气预报以及作物生长状况等信息,自动评估当前灌溉计划的效果,并根据需要调整灌溉量和时间。同时,定期评估灌溉效果:每隔一定周期(如一周或一个月),对灌溉效果进行回顾分析,评估作物的生长状况和水资源消耗效率。根据评估结果优化灌溉策略。根据季节变化调整策略:比如在旱季,灌溉需求会大幅增加,此时可增加灌溉频率;在雨季则可减少人工灌溉,避免水源浪费。

3.2 设施维护与管理

3.2.1 灌溉设施维护的重要性

灌溉设施是节水灌溉工程的重要组成部分,其运行效率直接影响灌溉效果。设施的维护与管理对于保证灌溉系统的正常运行、延长设施使用寿命、降低故障率以及确保水资源的高效利用至关重要。设施维护的核心意义包括:定期的检查与维护能够及时发现和排除故障,减少因设备损坏或故障造成的灌溉中断,保障灌溉系统的连续性;设施的良好维护不仅能够提高设备的运行效率,还能延长其使用寿命,避免因设备老化、腐蚀等问题频繁更换设施,降低建设和运营成本;设备维护确保水流量和水压的稳定,避免管道堵塞、喷头故障等问题影响灌溉效果,确保每一滴水都能精确送达作物根部。

3.2.2 设施管理的关键内容

第一,定期检查与保养。对灌溉系统中的泵站、管道、喷头、滴头等设施进行定期检查与保养,确保其功能正常。如管道清洗、喷头调整等。

第二,智能监控与故障预警。利用智能监控技术,实时监控灌溉设备的运行状态。传感器可以检测水流、压力、温度等数据,系统能及时发现异常并发出预警,便于及时处理。

第三,系统清理与维修。定期清理管道和喷头,避免堵塞和积垢影响灌溉效果。对于机械部件和电气设备,应有专门的维修保养计划,确保其高效运行。

3.3 农民参与和管理模式探讨

农民是节水灌溉工程实施的主体,农民的参与和管理模式直接影响灌溉工程的效率和效果。农民应通过技术培训和信息平台获取节水灌溉相关知识,提高他们对现代灌溉技术的认知,参与灌溉计划和管理决策。通过农业合作社等集体形式,集中管理和利用水资源,实施统一的灌溉计划和设备维护,降低管理成本,提高灌溉效率。此外,政府可以通过政策支持、补贴、税收优惠等方式鼓励农民采用节水灌溉技术。同时,提供技术指导和培训,帮助农民掌握现代灌溉技术,推动节水灌溉系统的普及与应用。

4 结束语

综上所述,在我国农业经济繁荣发展的今天,农业基础设施建设力度也在不断加大,加强节水技术的应用势在必行。农田水利节水灌溉工程是农业现代化的重要组成部分,通过优化水资源管理和灌溉方式,不仅能够促进农业生产的持续增长,还能够为未来的水资源管理提供宝贵经验。

参考文献

- [1]翟龙.高效节水灌溉技术在农田水利工程中的应用要点[J].世界热带农业信息,2023(07):39-41.
- [2]王恩生.农田水利工程中节水灌溉技术应用要点研究[J].农业开发与装备,2023(07):232-234.
- [3]周瑞晏.农田水利工程中高效节水灌溉技术的实践探讨[J].新农业,2023(14):68-69.
- [4]郑旭.农田水利节水灌溉工程建设管理存在的不足及改进方法[J].智慧农业导刊,2022,2(02):73-75.