交通道路桥梁施工中裂缝控制方法研究

张 涛 山西煤炭运销集团晋城有限公司 山西 晋城 048000

摘 要:交通道路桥梁施工中的裂缝问题直接影响工程质量与结构安全。材料性能、施工工艺、环境变化及荷载作用是裂缝产生的关键诱因。通过优化材料选择与配比,严格规范施工流程,实时监测环境因素并采取有效防护措施,合理控制荷载等方法,可系统提升裂缝防控能力,保障桥梁结构的耐久性与安全性,对推动交通基础设施建设高质量发展具有重要现实意义。

关键词:交通道路;桥梁施工;裂缝控制方法

引言

随着交通事业的快速发展,道路桥梁建设规模与日 俱增,施工质量要求也愈发严格。裂缝作为常见病害, 严重威胁桥梁结构稳定性与使用寿命。现有研究表明, 材料劣化、施工不规范、极端环境及超载现象是裂缝产 生的主要根源。然而,针对多因素耦合作用下的裂缝控 制策略仍需深入探讨。本文基于工程实践,系统分析裂 缝成因,提出科学有效的控制方法,旨在为交通道路桥 梁施工质量提升提供理论与技术支持。

1 交通道路桥梁施工裂缝概述

交通道路桥梁施工裂缝是指在道路桥梁施工过程 中,由于各种因素的影响,在混凝土结构表面或内部出 现的缝隙。这些裂缝的存在不仅会影响道路桥梁的外观 质量, 更重要的是会对其结构性能和使用寿命产生严重 威胁。根据裂缝的形态和成因,交通道路桥梁施工裂缝 可分为多种类型。从形态上看,裂缝可分为表面裂缝、 贯穿裂缝和深层裂缝。表面裂缝通常出现在混凝土结构 的表面, 宽度较窄, 一般不超过0.2mm, 其深度较浅, 通 常不超过混凝土结构厚度的1/3; 贯穿裂缝则是从混凝土 结构的一侧贯穿到另一侧,对结构的整体性破坏极大; 深层裂缝位于混凝土结构内部,一般较难直接观察到。 从成因上划分,裂缝又可分为收缩裂缝、温度裂缝、荷 载裂缝、沉降裂缝等。收缩裂缝主要是由于混凝土在硬 化过程中水分蒸发、体积收缩而产生;温度裂缝是由于 混凝土在温度变化过程中,内部产生温度应力,当温度 应力超过混凝土的抗拉强度时就会产生裂缝; 荷载裂缝 是在车辆荷载、人群荷载等外力作用下, 混凝土结构因 应力集中或强度不足而产生的裂缝; 沉降裂缝则是由于 地基不均匀沉降,导致混凝土结构产生附加应力,从而 引发裂缝。裂缝对交通道路桥梁的危害不容小觑。第 一, 裂缝的存在会降低桥梁结构的承载能力, 使桥梁在 承受荷载时更容易发生破坏。第二,裂缝会为水分和有害气体的侵入提供通道,加速混凝土的碳化和钢筋的锈蚀,从而进一步削弱桥梁的结构性能,缩短其使用寿命。第三,裂缝还可能影响道路桥梁的行车舒适性和安全性,增加车辆行驶过程中的颠簸和噪音,甚至可能导致交通事故的发生。对交通道路桥梁施工裂缝进行有效的控制,是确保道路桥梁工程质量和安全的关键环节。

2 交通道路桥梁施工中裂缝产生的原因

2.1 材料因素

在交通道路桥梁施工中,材料性能对裂缝的产生起 着关键作用。水泥作为混凝土的核心胶凝材料,其品 种、强度等级与安定性直接影响混凝土质量。若选用水 化热高的水泥, 在水化过程中会释放大量热量, 使混凝 土内部温度急剧升高,内外温差加大,进而产生温度应 力, 当应力超过混凝土抗拉强度时便会引发裂缝。骨料 的级配与含泥量同样不容忽视, 骨料级配不良会导致混 凝土拌合物孔隙率增加,需水量增多,硬化后收缩变形 增大;骨料含泥量过高,会降低骨料与水泥石的粘结 力,影响混凝土强度,同时增加混凝土干缩,致使收缩 裂缝出现。外加剂的不合理使用也会带来隐患,如减水 剂掺量过多,会使混凝土凝结时间延长,在凝结硬化前 因自重作用产生塑性沉降裂缝; 引气剂使用不当, 可能 改变混凝土内部结构,降低其抗裂性能。混凝土配合比 设计若不科学, 水胶比过大, 会导致混凝土在硬化过程 中水分蒸发后留下大量孔隙,降低强度和抗渗性,增加 收缩裂缝产生的概率;砂率过高或过低,会影响混凝土 的和易性与密实度,进而影响其抗裂能力[1]。

2.2 施工工艺因素

施工工艺的优劣直接关系到交通道路桥梁的质量与 裂缝状况。混凝土搅拌过程中,搅拌时间不足会导致各 种材料混合不均匀,影响混凝土的强度和耐久性,为 裂缝产生埋下隐患;搅拌时间过长,则会使混凝土拌合 物的和易性变差, 出现离析现象, 同样不利于混凝土质 量。运输过程中, 若运输工具选择不当或运输距离过 长,会造成混凝土拌合物坍落度损失过大,甚至出现初 凝现象, 浇筑后易产生裂缝。浇筑环节, 若振捣不密 实, 混凝土内部会存在蜂窝、孔洞等缺陷, 降低结构整 体性和强度,在荷载或其他因素作用下引发裂缝;振捣 过度则会使混凝土产生分层离析,粗骨料下沉,表面浮 浆,导致表面收缩裂缝。在混凝土养护方面,养护时间 不足或养护方法不当,会使混凝土表面水分快速蒸发, 产生干缩应力,引发干缩裂缝;养护温度和湿度控制不 合理, 也会影响混凝土的强度增长和体积稳定性, 增加 裂缝产生的风险。模板拆除过早,混凝土强度尚未达到 设计要求,无法承受自身重量和施工荷载,易发生变形 开裂;模板拆除过晚,又会影响施工进度,且可能因混 凝土与模板之间的粘结力过大, 在拆除时导致混凝土表 面受损,产生裂缝。

2.3 环境因素

环境因素对交通道路桥梁施工裂缝的产生有着显著 影响。温度变化是引发裂缝的重要环境因素之一。在混 凝土浇筑初期, 水泥水化放热使混凝土内部温度迅速升 高,而表面温度相对较低,形成较大的内外温差。当温 差超过一定范围时, 混凝土内部产生压应力, 表面产生 拉应力, 若拉应力超过混凝土的抗拉强度, 就会在表面 产生温度裂缝。随着时间推移,混凝土逐渐降温,内部 收缩受到外部约束,又会产生收缩应力,可能导致贯穿 裂缝的出现。湿度变化同样不可忽视, 当环境湿度较低 时,混凝土表面水分快速蒸发,而内部水分向表面迁移 速度较慢,造成表面干缩变形大于内部,从而产生干缩 裂缝;若环境湿度急剧变化,混凝土反复干湿交替,会 使混凝土内部结构受到破坏,降低其抗裂性能。冻融循 环对处于寒冷地区的交通道路桥梁危害极大, 当混凝土 内部孔隙中的水分结冰时,体积膨胀约9%,对周围混凝 土产生膨胀压力;融化时又形成孔隙,使混凝土内部结 构损伤。经过多次冻融循环,混凝土的强度和耐久性不 断下降,最终产生裂缝。大风天气会加速混凝土表面水 分蒸发,增加干缩裂缝产生的可能性;暴雨可能导致混 凝土表面温度骤降,引发温度裂缝[2]。

2.4 荷载因素

荷载作用是交通道路桥梁施工裂缝产生的重要诱因。在施工过程中,临时荷载的不合理布置和使用会对混凝土结构产生不利影响。例如,施工设备、材料的堆放位置不当,可能使局部混凝土承受过大的集中荷载,

导致应力集中,当应力超过混凝土的承载能力时,就会产生裂缝。模板支撑体系的设计与搭设不合理,在浇筑混凝土过程中,可能因支撑体系失稳或变形过大,使混凝土结构受到不均匀的荷载作用,引发裂缝。在桥梁施工中,挂篮施工时挂篮的重量、移动过程中的不平衡荷载等,若控制不当,都会对已浇筑的混凝土梁体产生不利影响,导致裂缝出现。在道路桥梁运营阶段,车辆荷载的反复作用是导致裂缝产生和发展的关键因素。车辆行驶过程中产生的动荷载,会使混凝土结构产生疲劳应力,随着时间的推移,疲劳损伤不断积累,当疲劳应力超过混凝土的疲劳强度时,就会产生疲劳裂缝。超载车辆的通行会使道路桥梁承受的荷载远超设计标准,结构内部应力大幅增加,加速裂缝的产生和扩展,严重影响道路桥梁的结构安全和使用寿命。

3 交通道路桥梁施工中裂缝的控制方法

3.1 优化材料选择与配比

(1) 在水泥材料选择方面, 充分考虑工程实际需 求,优先选用水化热较低的水泥品种,如低热矿渣硅酸 盐水泥。该类水泥在水化过程中释放热量少,能有效降 低混凝土内部温升,减小因温度差异产生的温度应力, 进而降低温度裂缝出现概率。严格把控水泥强度等级和 安定性指标,确保水泥质量稳定,避免因水泥质量问题 导致混凝土性能缺陷。(2)骨料质量控制至关重要, 选择级配良好的粗细骨料,通过合理搭配不同粒径的骨 料,减少混凝土拌合物孔隙率,降低用水量,从而减小 混凝土硬化后的收缩变形。严格控制骨料含泥量,含泥 量过高会严重削弱骨料与水泥石的粘结力,增加干缩裂 缝风险,实际施工中需对骨料进行清洗和筛分处理,保 证含泥量符合标准要求。(3)科学合理使用外加剂并优 化混凝土配合比。根据工程特点和施工条件,精确控制 外加剂掺量,如减水剂使用时严格按配合比要求添加, 避免因掺量过多导致混凝土凝结时间异常。合理设计水 胶比和砂率, 水胶比过大易引发收缩裂缝, 需在满足施 工和易性前提下尽量降低; 砂率应根据骨料特性和施工 要求调整,确保混凝土和易性、密实度良好,提升其抗 裂性能。

3.2 规范施工工艺

(1)混凝土搅拌环节需精准把控搅拌时间与工艺参数,搅拌时间过短会致使材料混合不充分,影响混凝土强度与耐久性,搅拌时间过长则会破坏混凝土和易性,造成离析。实际操作中,根据搅拌机类型、材料特性等确定最佳搅拌时间,通过试验验证并严格执行,保证混凝土各组分均匀混合,形成质量稳定的拌合物。(2)运输过程中

合理选择运输工具并优化运输方案,针对混凝土特性和施工距离,选择合适的运输车辆,配备必要的保坍措施,如添加缓凝剂、采用保温运输等,防止混凝土在运输途中坍落度损失过大或出现初凝现象,确保运至浇筑地点的混凝土仍能满足施工要求,避免因运输问题引发浇筑后裂缝。

(3)浇筑与养护及模板拆除环节严格遵循规范。浇筑时控制振捣质量,振捣不足会使混凝土存在孔洞、蜂窝等缺陷,振捣过度则导致分层离析,需采用正确的振捣方法和时间,确保混凝土密实且不离析。养护阶段根据混凝土特性和环境条件,合理控制养护时间、温度和湿度,保证混凝土强度正常增长,减少干缩裂缝。模板拆除时依据混凝土强度发展情况,在强度达到设计要求后拆除,避免过早拆除导致混凝土变形开裂,也防止拆除过晚影响施工进度和混凝土表面质量^[3]。

3.3 加强环境监测与应对

(1)针对温度变化对混凝土的影响,施工过程中加 强温度监测,在混凝土内部和表面布置温度传感器,实 时掌握混凝土温度变化情况。当监测到混凝土内外温差 接近临界值时,及时采取温控措施,如在混凝土表面覆 盖保温材料、内部通水降温等,减小温度梯度,降低温 度应力, 防止温度裂缝产生。(2)湿度环境控制方面, 根据环境湿度变化及时调整养护措施, 在干燥环境下, 增加养护频率和覆盖保湿材料,减缓混凝土表面水分蒸 发速度,保持混凝土表面湿润,避免因水分快速散失产 生干缩裂缝。对于湿度急剧变化的环境, 采取相应防护 措施,如搭建防风棚等,减少干湿交替对混凝土结构的 破坏,提升其抗裂性能。(3)对于处于冻融环境的交通 道路桥梁,施工前对混凝土进行抗冻性能优化,选用抗 冻性好的原材料并合理调整配合比,提高混凝土密实度 和抗冻等级。在冬季施工时,采取有效的保温措施,如 对原材料加热、对浇筑后的混凝土覆盖保温被等, 防止 混凝土内部孔隙水结冰膨胀,减轻冻融循环对混凝土结 构的损伤,降低裂缝产生风险。

3.4 合理控制荷载

(1) 在施工阶段, 科学规划临时荷载布置, 对施工设

备、材料的堆放位置进行严格设计和管理,避免在混凝土 结构局部集中堆放大量重物, 防止因局部荷载过大导致应 力集中产生裂缝。对模板支撑体系进行精确设计与严格搭 设,确保支撑体系具有足够的强度、刚度和稳定性,在浇 筑混凝土过程中能均匀承载, 避免因支撑体系问题使混凝 土结构受不均匀荷载而开裂。(2)桥梁挂篮施工时,精 确计算挂篮重量及移动过程中的荷载变化至关重要。需依 据计算结果制定合理的挂篮移动和浇筑方案, 在施工过程 中严格控制不平衡荷载。借助实时监测手段,及时调整相 关参数,确保挂篮施工过程中混凝土梁体受力均匀,防止 因挂篮荷载控制不当引发梁体裂缝。(3)在道路桥梁运 营阶段,加强车辆荷载管理,通过设置称重设备、限制超 载车辆通行等措施,减少超载车辆对道路桥梁的破坏。根 据道路桥梁设计荷载标准,合理规划交通流量,避免车辆 荷载长时间、反复作用导致混凝土结构疲劳损伤积累, 延 缓疲劳裂缝的产生和发展,保障道路桥梁在运营过程中的 结构安全和使用寿命[4]。

结语

综上所述,交通道路桥梁施工裂缝控制是一项系统 工程,需综合考量材料、工艺、环境及荷载等多方面因 素。通过优化材料性能、规范施工流程、强化环境应对 与合理控制荷载,可显著降低裂缝风险。未来,随着新 材料、新技术的不断涌现,应持续深化裂缝控制技术研 究,结合智能监测手段,实现裂缝防治的精准化与智能 化,为交通道路桥梁建设筑牢安全屏障。

参考文献

[1]王秀明,李健.交通道路桥梁施工中裂缝控制方法研究[J].全体育,2020(9):167-168.

[2]吴相霖.交通道路桥梁施工中裂缝控制方法研究[J]. 数码精品世界,2021(10):231-232.

[3]邢勐轩.交通道路桥梁施工中裂缝控制方法研究[J]. 电脑爱好者(普及版)(电子刊),2020(3):535-536.

[4]刘继顺.交通道路桥梁施工中裂缝控制方法研究[J]. 电脑爱好者(普及版),2021(11):13-14.