BIM技术对水厂改扩建中的智慧运用与研究

沈建

天津水务集团华森规划勘测设计研究院有限公司 天津 300220

摘 要:本文探讨了BIM技术在水厂改扩建中的智慧运用。阐述其在设计阶段优化设计流程、实现多专业协同; 施工阶段精准统计工程量、模拟施工进度;运维阶段构建数字孪生、实现预测性维护等核心价值。分析了厂区布局、 复杂结构安装、地质支护、管线综合等关键应用场景,以及全生命周期数据管理、BIM与物联网协同、可视化决策支 持系统构建等技术创新与实践路径,并提出应对挑战的策略。

关键词: BIM技术; 水厂改扩建; 数字孪生; 智慧运维; 多专业协同

引言:随着城市化进程加快,水厂改扩建需求日益增长。传统水厂改扩建模式在设计、施工、运维各阶段存在信息沟通不畅、效率低下、管理粗放等问题。BIM技术凭借其三维可视化、多专业协同、数据集成等优势,为水厂改扩建提供了新的思路与方法。将BIM技术应用于水厂改扩建,有助于提升项目全生命周期的管理水平,保障水厂安全稳定运行,推动水务行业向智慧化方向发展。

1 BIM 技术在水厂改扩建中的核心价值

1.1 设计阶段优化

在水厂改扩建项目中,BIM技术通过构建三维可视化模型,将复杂的水处理工艺流程以直观的方式呈现。传统二维图纸难以表达空间结构的相互关系,而三维模型能精准展现构筑物、管线、设备的空间位置,帮助设计人员全面理解设计意图,发现潜在设计缺陷。基于三维模型的工艺流程模拟,可对水厂取水、沉淀、过滤、消毒等环节进行动态推演,检验水流路径、设备衔接是否合理,提前优化处理效率。多专业协同设计是BIM技术的另一重要优势。在改扩建项目中,建筑、结构、给排水、电气等多专业需紧密配合。BIM平台为各专业提供统一协作环境,各专业设计成果实时共享、同步更新。

1.2 施工阶段赋能

BIM技术在施工阶段可实现工程量精准统计与成本控制。三维模型包含详细的构件信息,通过参数化设置,可自动计算各类材料用量,如混凝土体积、钢材重量、管道长度等,避免人工统计误差,为招投标、物资采购提供可靠依据。基于准确的工程量数据,结合市场价格信息,可制定更精确的成本预算,有效控制项目成本^{III}。施工模拟与进度动态管理是BIM技术赋能施工的重要体现。通过将施工进度计划与三维模型关联,进行4D施工模拟,直观展示各施工阶段的进度安排、资源配置情况。施工管理人员可提前预判施工过程中的潜在风险,

如工序衔接不合理、场地空间不足等问题,及时调整施工方案。施工过程中,通过现场数据采集设备将实际进度信息反馈至BIM模型,实现进度动态管理。对比计划进度与实际进度,分析进度偏差原因,采取针对性措施,确保项目按时完成。

1.3 运维阶段智慧化

在水厂运维阶段, BIM技术通过数字孪生实现全要 素数据集成。将水厂实体建筑、设备设施、管线系统等 信息完整映射至虚拟数字模型,整合设计图纸、施工记 录、设备参数等全生命周期数据,形成水厂的数字化镜 像。智能一体化净水装置采用高度集成化的设计,可实 现"U盘"式的即插即用,启动快速,方便快捷。运维人 员可通过数字孪生模型快速查询设备位置、规格型号、 安装时间等信息,实现设备的精细化管理。基于数字孪 生模型的设备健康监测与预测性维护, 可显著提升水厂 运维效率。将标准的智能一体化装置系列化,通过模块 化的装配,可满足不同处理水量的需要,同时便于运 输。将传感器采集的设备运行数据,如温度、压力、振 动等信息接入数字孪生模型,实时监测设备运行状态。 利用数据分析与机器学习算法,对设备运行数据进行深 度挖掘, 预测设备故障发生的可能性及时间, 提前制定 维护计划。相比传统的定期维护模式,预测性维护可减 少不必要的维护成本,避免因设备故障导致的停水事 故,保障水厂安全稳定运行。通过BIM技术,水厂运维从 被动响应转变为主动管理, 实现智慧化运维目标。同时可 根据不同地域环境和文化的不同,对设备外观进行变装调 整, 充分融入周边环境, 打造环境友好型的生态水厂。

2 BIM 技术在水厂改扩建中的关键应用场景

2.1 厂区布局与工艺流程分析

水厂改扩建项目中,厂区布局与工艺流程优化直接 影响项目整体效能。BIM技术通过现状实景模型与新建 单体融合设计,解决新旧设施衔接难题。利用激光扫描技术获取厂区现有建筑、道路、设备等实景数据,构建高精度现状模型,在此基础上叠加新建单体设计方案,直观展现新旧结构的空间关系。设计人员可通过模型比对,调整新建构筑物位置、尺寸,确保与既有设施无缝衔接,避免空间冲突。管线综合与空间布局优化是厂区设计的重要环节。水厂内部管线系统复杂,涵盖给水、排水、电气、自控等多类管线。

2.2 复杂结构与设备安装模拟

在水厂改扩建中,叠合结构与深基坑支护协同设计是保障施工安全的关键。BIM技术构建三维结构模型,对叠合结构的新旧混凝土结合面、钢筋连接节点进行精细化设计,确保结构受力合理。同时建立深基坑支护模型,模拟支护结构与周边环境、地下管线的相互作用,评估开挖过程中土体变形、支护结构受力情况。通过协同设计,提前优化支护方案,避免施工对既有建筑、管线造成影响。设备吊装路径与检修空间校核是设备安装阶段的重要工作。水厂大型设备如水泵、搅拌机等,安装过程需精准规划吊装路径与空间^[2]。BIM模型整合设备尺寸、厂房空间、周边障碍物等信息,模拟设备吊装过程,规划最优吊装路径,避免与建筑结构、管线发生碰撞。通过模型分析设备检修所需空间,预留足够操作区域,确保后期维护人员能够安全便捷地进行设备检修与更换。

2.3 地质与基坑支护模型

三维地质建模与支护方案验证为水厂改扩建提供地质数据支撑。利用勘察数据在BIM平台构建三维地质模型,直观呈现地层分布、岩土特性、地下水位等信息。设计人员基于地质模型分析不同区域地质条件对基坑开挖的影响,评估潜在风险。结合地质模型与基坑支护设计方案,模拟基坑开挖过程,验证支护结构的稳定性,分析土体位移、沉降情况,优化支护参数,确保支护方案安全可靠。风险预判与施工安全管控贯穿基坑施工全过程。BIM模型实时更新施工进度与工况信息,模拟不同施工阶段基坑受力变化,预测可能出现的风险点,如边坡失稳、涌水等。针对高风险区域,制定专项应急预案,提前布置监测点,利用传感器实时采集基坑变形、水位等数据并反馈至模型。一旦监测数据超出预警值,系统自动报警,施工人员可依据模型分析快速定位风险位置,采取有效措施控制风险,保障施工安全。

2.4 总图管线综合与碰撞检查

现状与新建管道连接节点可视化是水厂改扩建管线设计的重点。BIM技术将既有管线与新建管线模型整合,

通过三维可视化展示连接节点构造细节,如管道接口形式、阀门安装位置等。设计人员可直观查看连接节点与周边环境的关系,评估施工可行性,优化连接方案,确保新旧管线连接顺畅、密封性良好。多系统管线冲突检测与优化是提升管线设计质量的关键步骤。水厂内给排水、电气、暖通等多系统管线密集,传统二维设计难以全面排查冲突问题。BIM平台自动检测不同系统管线间的碰撞、间距不足等问题,生成冲突报告。设计人员根据报告对管线走向、标高进行调整,通过模型反复验证优化方案,减少施工阶段因管线冲突导致的设计变更与返工,降低施工成本,缩短工期。对于隐蔽管线,BIM模型可提供详细的三维定位信息,为后期管线维护、改造提供精准指引,避免因管线位置不明导致的误挖、误损情况,保障水厂运行安全与稳定。

3 BIM 技术在水厂改扩建中的技术创新与实践路径

3.1 全生命周期数据贯通与管理

水厂改扩建项目涉及设计、施工和运维等多个阶段 的数据交互, BIM技术需要构建一个贯穿全生命周期的数 据链条。在设计阶段生成的三维模型作为信息源头,包 含了建筑结构、设备参数、管线布局等详细信息。这些 信息不仅为后续阶段提供了基础, 还确保了从设计到运 维的信息一致性。施工阶段通过物联网设备实时采集进 度、质量和安全数据,并将其与BIM模型关联,形成动态 施工档案。这不仅提高了施工过程的透明度,还能及时 发现并解决问题,减少返工率[3]。进入运维阶段后,将设 备运行数据和维护记录集成至数字孪生体中, 实现了信 息闭环管理。例如,设备的型号、安装位置等设计信息 可以直接用于施工采购与运维管理,减少了重复录入错 误,提升了数据利用效率。为了实现各阶段数据的无缝 对接,必须建立统一的数据编码规则与存储标准。这样 可以避免信息孤岛现象,确保所有参与方都能访问最新 的项目信息,从而提高整体项目的协同效率。

3.2 BIM与物联网协同应用

物联网技术与BIM的融合为水厂智慧化提供了新的路径。在施工阶段,通过在建筑材料和设备构件上部署RFID标签或传感器,可以实现物料进场和安装过程的实时追踪。例如,将传感器嵌入混凝土结构以监测其强度变化,这些数据会自动同步至BIM模型,辅助施工质量控制。这种方法不仅可以提高施工质量,还可以减少因人工检查带来的误差。在运维阶段,物联网设备持续采集设备振动、压力、温度等数据,并与BIM模型结合形成动态数字孪生。当某台水泵出现振动异常时,系统能够自动调取BIM模型中的设备位置、安装图纸及历史维护

记录,为故障诊断提供多维度信息支持,缩短问题定位时间,提高运维响应速度。这种结合不仅提升了运维效率,还降低了因设备故障导致的停机风险,保障了供水系统的连续性和稳定性。

3.3 可视化决策支持系统构建

基于BIM模型开发的可视化决策支持系统,可以显 著提升水厂改扩建项目的管理效能。在设计方案比选环 节,系统将不同方案的空间利用率、能耗预测、施工难 度等关键指标以可视化图表形式呈现,帮助决策者直观 评估优劣。例如,在比较两个不同的工艺流程布置方案 时,系统可以通过三维模型展示每个方案的具体布局和 潜在影响,使决策更加科学合理。施工阶段,通过GIS (地理信息系统)与BIM集成,可以展示厂区周边环境、 交通状况与施工进度的空间关系, 优化场地布置与材料 运输路线[4]。这不仅提高了施工效率,还减少了对周边 环境的影响。运维阶段,系统以三维界面展示水厂的整 体运行状态,关键设备参数以颜色、动画等形式实时呈 现。当某些参数超出设定阈值时,系统会自动触发预警 机制,管理者可以通过模型快速定位异常区域,并下达 相应的维护指令。这种可视化的管理方式, 使得整个管 理流程更加智能化和高效化。

3.4 应用实践中的挑战与应对

尽管BIM技术在水厂改扩建中具有巨大的潜力,但在 实际应用过程中仍面临诸多挑战。技术层面的问题主要 包括多源数据融合的兼容性问题,如地质数据与BIM模 型的精度匹配以及不同格式文件之间的转换损耗。这些 问题可能导致数据丢失或精度下降,影响最终的应用效 果。管理层面则存在项目参与方对BIM应用认知差异的 问题, 部分人员仍然依赖传统工作模式, 导致协同效率 低下。针对上述技术挑战,研发数据转换接口和轻量化 处理工具是有效解决方案之一。通过开发专门的数据转 换接口,可以降低不同格式文件之间的转换损耗,确保 数据的一致性和完整性。采用轻量化处理工具, 可以在 不影响数据质量的前提下减少文件大小, 便于传输和使 用。对于管理层面的挑战,建立BIM应用培训体系至关重 要。通过定期组织培训课程,提升团队成员的数字化能 力,增强他们对新技术的理解和应用水平。推行BIM应 用考核机制,将模型质量、数据更新频率等纳入合同条 款,有助于保障各阶段的应用深度和广度。

结束语

BIM技术在水厂改扩建中的应用具有显著优势,贯穿设计、施工、运维全流程,优化了各阶段工作,提升了项目整体效能。通过全生命周期数据管理、BIM与物联网协同、构建可视化决策支持系统等创新实践,进一步挖掘了BIM技术的潜力。尽管面临技术与管理层面的挑战,但通过研发工具、建立培训体系与考核机制等措施可有效应对。未来,应持续深化BIM技术在水厂改扩建中的应用,助力水务行业高质量发展。

参考文献

- [1]钟亚丽.BIM技术在水厂改扩建工程中的研究与应用[J].水利技术监督,2022(2):46-49,107.
- [2]袁健.BIM技术在水厂工程建设管理中的应用[J].土木建筑工程信息技术,2020,12(06):82-86.
- [3]康进军.BIM技术在水利工程建设与管理中的应用探讨[J].农业开发与装备,2023(1):146-148.
- [4]雷蕾,李兵兵.BIM技术在水厂水厂建设管理中的应用[J].商品与质量,2020(47):171.