建筑电气施工安装技术及质量管控方式研究

王德鑫 何家武 黄向峰 青建集团股份公司 山东 青岛 266000

摘 要:随着社会的发展,建筑行业也得到了快速的发展。建筑电气施工安装技术及质量管控可以保证电气功能的实现,确保建筑系统得以安全稳定运行。因此,关于建筑电气施工安装技术及质量管控方式的研究具有重要的意义。

关键词:建筑工程;电气施工;安装技术;质量管控

1 建筑电气工程施工质量控制的特点

建筑电气工程施工质量控制具有以下几个特点:建 筑电气工程的施工质量直接关系到电力供应和用电设备 的安全可靠运行。电气工程的施工质量问题可能会导致 电路短路、线路过载、火灾等安全事故, 因此对电气工 程的施工质量要求非常严格。建筑电气工程的施工过程 需要符合一系列的电气规范和标准。施工人员要熟悉电 气工程的相关规范要求,包括电气线路的布置、导线的 截面、接线盒的选择和安装、电器设备的安装等。只有 按照规范要求进行施工,才能确保电气工程的质量和安 全。建筑电气工程需要进行多层次的质量检验和测试。 施工过程中,需要对电气线路、电器设备和接地系统等 进行各种测试,以确保其符合规范要求和设计标准。同 时,还需要进行质量验收,确保施工质量达到预期目 标。建筑电气工程的施工质量控制需要充分考虑电力供 应的可靠性和电能利用的效率[1]。施工过程中要注意电缆 配线的合理性,避免线路过长、电压损失过大。同时, 还要注意电气设备的选用和调试,确保其正常运行和能 效高。建筑电气工程的施工质量控制需要紧密协调多个 施工单位之间的工作。电气工程常常涉及到土建、装修 和给排水等其他工程的关联施工,施工过程中需要与各 个施工单位密切配合。只有形成良好的施工协调机制, 才能确保施工质量的一致性和协调性。通过了解建筑电 气工程施工质量控制的特点,可以更好地指导施工工 作,确保电气工程的质量和安全,并使电力系统的供应 和用电设备的正常运行达到稳定和高效。

2 现代电气安装品质对工程建设的影响

随着现代科技的不断发展,建筑电气施工安装技术 也在不断进步,对电气安装品质的要求越来越高。在确 保工程质量的前提下,建筑电气施工安装技术和质量管 控方式的研究至关重要。首先,建筑电气施工安装技术 的研究是提高电气安装品质的关键。这包括对电气设备

和线路布置进行合理规划和设计,确保电气系统的可靠 性和安全性。同时,研究先进的电气施工工艺和技术, 采用高效的施工方法和设备,提高施工效率和品质控制 水平。例如,采用智能化的电气安装系统,实现自动化 管理和监测,提高施工质量和工作效率。其次,质量管 控是保证电气安装品质的重要手段。通过建立严格的质 量管理体系,明确工程质量的责任分工和要求。加强原 材料的检验和评估,选择合格的供应商和材料,确保施 工材料的可靠性和稳定性。加强施工过程的监督和检 验,及时发现和纠正施工中可能存在的问题[2]。另外,建 立完善的验收和评估机制,对电气安装品质进行全面的 检查和评估,确保工程符合规范和标准要求。最后,现 代电气安装品质对工程建设具有重要影响。良好的电气 安装品质可以保障工程的可靠性、安全性和稳定性,提 高能源利用效率和环境保护水平。因此,建筑电气施工 安装技术和质量管控方式的研究是确保电气安装品质的 关键环节。

3 建筑电气设备的安装施工要点

3.1 预留预埋的施工要点

预留预埋位置要科学合理。根据建筑设计图纸和施工规范,确定电气设备的位置和布置方案。预留预埋位置应考虑设备的安装空间、供电需求、维护操作和使用方便等因素,确保后期安装和施工的顺利进行。预留预埋材料要优质可靠。选择适合的预留预埋管材和箱体,应具备良好的电气绝缘性能和耐腐蚀性能,以确保线路的安全运行和设备的可靠使用。预留预埋材料的选用要符合相关标准和规范,避免使用劣质材料带来的安全隐患。预留预埋管材和箱体的固定要牢固可靠,要确保设备不会因外力震动或冲击而移位或损坏。预埋过程中要注意管道的保护,避免损坏或污染管线^[3]。同时,预留预埋时要预留合适的管道余量,以便后期的管线布线和连接。建筑电气设备的预留预埋应符合国家或行业标准的

要求,如《建筑电气设备安装工程质量验收规范》等。预留预埋的深度、位置、距离等应按照相关规范进行施工,以确保后期电路连接的安全可靠性。记录预留预埋的位置、规格和施工过程,建立相应的档案资料。施工结束后,进行预留预埋验收,确保各项施工标准和规范的要求得到满足,为后期电气设备的安装打下良好的基础。

3.2 配电装置安装的施工要点

配电装置的选型和设计要合理。根据建筑物的用电 需求和负荷特点,选择适当的配电装置。在设计配电装 置时,要合理划分不同的电路,确保供电能力和电路 的均衡负荷。同时,还要根据设计要求,选择适当的断 路器、接触器、变压器等设备,确保其符合相关技术规 范和标准。配电装置的安装要符合规范和标准。施工过 程中,要按照设计图纸和安装规范,进行准确的尺寸测 量和设备安装。配电装置的安装位置和固定方式要符合 相关要求,以确保装置的稳定性和运行安全性。同时, 还要注意保护好设备的绝缘性能,避免因外界因素对设 备的影响。配电装置的接线和连接要规范可靠。根据设 计要求,正确接线,确保电路连接的连贯性和通畅性。 要选择合适的导线和绝缘材料,正确施工接头和插头插 座,避免电气连接不良或产生短路等故障[4]。同时,还要 采取一定的防护措施,减少电气事故的发生。安装完成 后,要进行设备的绝缘性能测试,确保绝缘电阻在安全 范围内。同时,还要进行各个线路和设备的电气连通性 测试,并进行设备的调试和运行试验,确保配电装置的 正常运行和稳定供电。配电装置安装过程中要做好记录 和验收。对施工过程进行全程记录,包括设备型号、数 量、位置、维护要求等。安装完成后,进行配电装置的 验收,核实装置的安装质量和性能是否符合相关标准和 规范,确保施工质量的合格性。

3.3 PVC电线管暗配的施工要点

选择合适的PVC电线管。PVC电线管应按照相关国家标准选择,并具备良好的绝缘性能和耐腐蚀性能。根据电力负荷和电线的数量,选择适当尺寸和厚度的PVC电线管,确保电线电缆的合理布置和安装。根据建筑结构和用电要求,确定电线的布置位置和路径。要避免与其他管线冲突,尽量选择不易损坏和干扰的区域进行暗配线路布置。同时,要保证电线的合理分组,避免过多线束造成堵塞和杂乱。暗配线路的安装要符合相关标准和规范^[5]。在安装过程中,要严格按照设计图纸和施工规范进行操作。确保PVC电线管的切割、弯曲和连接等工序符合要求,保证管线的完整和连接的牢固性。同时,还要注意保护电线电缆的绝缘层,避免损坏导致电气事

故的发生。暗配线路的连接要可靠。在暗配线路的连接 处,应采用专用接头或连接器,确保连接的可靠性和稳 定性。同时,还要进行电阻测试,确保线路的电气连通 性和绝缘性能符合要求。对于长距离的暗配线路,还可 以进行功耗测试,保证电力的稳定供应。

3.4 弱电工程工艺技术要点

弱电工程是建筑电气工程中的一项重要内容, 涉及 到通信、网络、安防、监控等各种弱电系统的设计和安 装。以下是弱电工程的工艺技术要点。合理规划和设 计弱电系统。在工程前期,要根据建筑物的实际需求和 功能要求,进行弱电系统的规划和设计。要考虑各个系 统之间的协调与兼容, 合理划分布线区域和设备摆放位 置,确保系统正常运行和扩展。选择合适的弱电设备和 材料。在弱电系统的选型上,要根据设计要求和技术规 范,选择具有良好性能和可靠性的设备和材料。例如, 选择高质量的通信设备、网络设备、安防监控设备以及 弱电电缆、连接器等材料,以确保系统的可靠性和稳定 性。布线和连接要规范可靠。在施工过程中,应按照设 计图纸和施工规范进行布线和连接。布线要合理分组和 分类,避免干扰和交叉。连接要采用专用连接器和接 口,保证连接的牢固和电气连通的可靠性。对于跨层和 长距离布线,还要考虑信号衰减和干扰的问题,选择合 适的设备和方法进行补偿和抗干扰。弱电系统的防护和 维护要做好。对于弱电设备和线路,要采取适当的防护 措施,避免受到电磁干扰、静电和外界环境的影响。对 于弱电系统的维护,要制定维护计划,定期检查和保养 设备,及时修复和更换故障设备和线路,确保系统的正 常运行和安全性[1]。

4 提高建筑电气工程及安装工程质量的方法和策略

4.1 提高质量意识

第一加强质量培训和教育。培训和教育是提高质量意识的基础。组织相关人员参加质量管理培训和技术交流,提高他们的专业技能和质量意识。培训内容可包括质量管理的基本概念、工作标准和规范、质量控制手段等。此外,通过案例分享和经验交流活动,加强对施工人员的技术指导和监督,形成全员参与、关注质量的良好氛围。第二是建立质量管理体系。建立完善的质量管理体系是确保工程质量的基础,包括制定质量管理等册、程序和工作指导,明确责任和权益,确保各个阶段的工作按照标准和规范进行。通过跟踪、检查和评估,及时发现和解决质量问题,确保施工质量符合要求。第三是加强现场质量管理。现场质量管理是保证工程质量的关键环节。要加强现场巡检和监督,及时发现和纠正

质量问题。定期进行现场质量检查,评估施工质量和工作进度,总结经验教训,不断完善质量管理措施。同时,要注重细节质量的控制,确保施工过程中的每一个环节都符合标准和规范要求。第四是建立质量意识激励机制^[2]。通过激励措施,奖励优秀的施工团队和个人,树立质量第一的理念。设立质量奖项和荣誉,进行嘉奖和表彰,激励大家积极参与质量管理,提高管理意识和责任感。

4.2 加强机械设备的维护保养

根据设备的使用频率和工作环境,制定详细的维护 计划,包括定期检查、清洁、润滑、更换磨损部件等内 容。维护计划应合理安排,避免设备长时间停机或导致 生产序延误。其次是定期检查和清洁设备。定期检查设 备的各个部件和连接件,发现问题及时修复或更换。同 时,对设备进行清洁,防止灰尘、油脂等杂质积聚,影 响设备性能。然后是及时润滑机械运动部位。定期给机 械设备的滑动部位和轴承等润滑部件加注润滑油或润滑 脂,保持其良好的运转状态。润滑油或润滑脂的选择要 根据设备的要求和工作环境进行合理选择,并注意润滑 量和润滑周期的控制。另外是定期更换磨损部件。设备 使用一段时间后,磨损部件(如皮带、滤网、刀具等) 会逐渐失效,影响设备的正常工作。定期检查和更换这 些磨损部件,确保机械设备的正常运行和安全性[3]。此 外还需要注意设备的安全使用。对于涉及高压、高温、 高速运行的设备,要严格按照操作规程和安全标准进行 操作,不得超负荷使用。设备的操作人员要接受相关培 训,熟悉设备的操作流程和注意事项,确保设备的安全 运行。

4.3 加强技术监督

是建立科学有效的监督机制。设立专门的技术监督 部门或组织,负责对工程进行全方位的监督和检查。监 督机制要具备权威、公正、专业、独立性,确保监督活 动的透明度和公正性。其次是加强监督人员的专业能力 和素质。技术监督人员要具备深厚的技术知识和较高的

专业素养,能够独立判断和评估工程的技术合理性和合 规性。监督人员要定期进行专业培训和学习,跟进技术 发展和标准更新,不断提高监督能力和水平。然后是强 化监督过程的规范性和操作性。制定详细的监督流程和 操作规程,明确监督要求和标准。监督过程中要严格按 照规程执行,确保监督结果客观、准确。监督人员要及 时发现并记录问题,对发现的问题进行评估和反馈,并 采取相应的整改措施,确保问题得到及时解决。另外, 要加强监督信息的共享和整合。通过建立监督信息系 统,实现监督数据的集中管理和共享。监督人员应及时 整理和汇总监督结果和数据,形成监督报告和统计数 据,为工程质量评估和决策提供依据[4]。加强监督与评估 的衔接。监督部门与评估机构要建立良好的沟通和协作 机制,共同参与工程质量的监督和评估活动。监督人员 可以通过监督实施过程中的巡视和检查, 收集和整理相 关数据和资料,为评估工作提供支持和参考。

结束语

建筑电气设备的实际安装过程中,通过从多个角度 进行考虑分析,掌握好电气设备的安装技术要点,注重 各安装环节的质量控制,从整体上提高电气设备的安装 质量。通过在电气设备的安装过程中多种要点的把握, 这样才能真正有助于电气设备安装工作顺利开展。

参考文献

- [1]李华.电气设备安装与调试的质量控制[J].冶金管理.2020(9).
- [2]王宗奎.高低压电气设备安装质量控制措施研究[J]. 光源与照明.2020(8).
- [3]黄国斌.建筑电气施工安装技术及质量管控方式研究[J].建材与装饰,2019(19):2-3.
- [4]杨建兵.建筑电气安装中防雷接地施工技术的应用与质量管理[J].绿色环保建材,2019(06):160.
- [5]周爱明.建筑电气安装中防雷接地施工技术的应用研究[J].中小企业管理与科技(上旬刊),2019(05):184-185.