水利工程施工技术措施及水利工程施工

朱微微 如东县水利电力建筑工程有限责任公司 江苏 南通 226400

摘 要:本文主要探讨水利工程施工技术措施及水利工程施工流程。通过分析施工准备阶段、施工实施阶段和施工验收阶段,阐述了水利工程施工的全过程和技术要求。同时,介绍了地基处理技术、预应力锚固技术、施工导流技术和土方工程技术等具体施工技术措施。水利工程施工需要遵循相应的规范和标准,确保工程的质量和安全。通过科学合理的施工流程和技术措施,可以提高水利工程的建设效率和质量,为水利工程的建设和管理提供有力保障。

关键词:水利工程;施工技术措施;施工

引言:水利工程是保障国家和地区水资源供给、防 洪抗旱、水力发电等重要基础设施。随着经济的发展和 人民生活水平的提高,对水利工程的需求和要求也越来 越高。水利工程施工是水利工程建设中的重要环节,其 技术措施和施工流程对于保障工程质量、安全和进度具 有重要意义。

1 水利施工技术管理的重要性

水利工程是我国基础设施建设中的重要组成部分, 其建设质量和安全性对于人民生活和社会发展都具有重 要意义。在水利工程施工过程中,技术管理是保证工程 质量的关键环节。本文将详细探讨水利施工技术管理的 重要性。1)提高工程质量。在水利工程施工过程中, 技术管理贯穿始终, 从施工前的准备工作到施工过程中 的现场管理, 再到施工后的检查验收, 每一个环节都需 要科学、合理的技术管理措施。通过技术管理,可以有 效地控制施工过程中的误差和错误,减少工程质量问题 的产生,从而提高工程质量。2)保证施工安全。通过 科学、合理的施工技术管理,可以有效地减少施工过程 中安全事故的发生,保障施工人员的生命安全。同时, 技术管理还可以提高施工效率,缩短施工周期,从而降 低施工成本[1]。3)优化资源配置。在水利工程施工过 程中,需要投入大量的人力、物力和财力资源。通过科 学、合理的施工技术管理,可以有效地优化资源配置, 提高资源利用效率。例如,在施工过程中,可以根据实 际情况合理调整施工人员和材料的使用计划,避免资源 浪费和重复建设,从而实现资源的优化配置。4)促进企 业发展。通过科学、合理的施工技术管理, 可以提高企 业的技术水平和管理能力,增强企业的市场竞争力。同 时,良好的施工技术管理可以为企业树立良好的形象和 信誉,从而吸引更多的客户和业务合作伙伴,促进企业 的发展。

2 水利工程施工技术措施

2.1 地基处理技术

在水利工程施工中, 地基处理是整个工程的基础, 也是工程质量和安全的关键环节。由于水利工程通常建 设在复杂的地理环境中, 地基处理技术的选择和应用对 于工程的稳定性和安全性具有至关重要的作用。首先, 对于软土地基的处理,通常采用砂垫层、碎石垫层、化 学灌浆等方法进行加固处理。砂垫层和碎石垫层可以增 加地基的承载能力, 防止地基沉降, 同时也可以提高地 基的排水性能。化学灌浆则是一种通过将化学浆液注入 地基中,对地基进行加固和防渗处理的方法。在施工过 程中,要严格控制材料的质量和施工工艺,确保砂垫层 和碎石垫层的厚度和均匀性,以及化学灌浆的压力和注 入量,从而保证地基处理的质量。其次,对于岩基的处 理,通常采用帷幕灌浆、接触灌浆等技术进行加固。帷 幕灌浆是一种在岩基表面钻孔并注入水泥浆液的加固方 法,可以有效地提高岩基的防渗性能和稳定性。接触灌浆 是一种在建筑物和岩基之间进行灌浆的加固方法, 可以有 效地将建筑物和岩基连接在一起,提高其协同工作能力。 在施工过程中,需要对钻孔的位置、深度、直径等进行严 格的控制,并对水泥浆液的配合比和注入压力进行严格的 监测和管理,以确保岩基处理的质量和效果。此外,在 进行地基处理时,还需要注意以下几点:1)根据不同的 地质条件选择合适的地基处理方法,并进行详细的地质 勘察和分析; 2) 在施工过程中要严格控制材料的质量和 施工工艺,确保地基处理的质量和效果;3)在地基处理 完成后要进行质量检测和验收,确保其符合设计要求; 4)对于存在问题的地基需要进行加固和补救处理,以确 保工程的安全性和稳定性; 5) 在施工过程中需要进行环 境保护和水土保持工作,减少对环境的影响。

2.2 预应力锚固技术

预应力锚固技术是一种广泛应用于水利工程中的加 固技术,它通过施加预应力,使岩土体产生一定的变 形,从而增强结构的稳定性。在水利工程中,预应力锚 固技术主要用于坝体加固、防止滑坡、提高库容等方 面。该技术的实施需要结合工程实际情况,进行科学合 理的设计和施工。首先,在进行预应力锚固施工前,需 要对锚固区域进行详细的勘察和分析,确定锚固的位置 和深度。然后根据设计要求进行钻孔作业,并确保钻孔 的深度和直径符合设计要求。在钻孔完成后,将锚索 (包括锚杆和锚锭)插入钻孔中,并对其进行张拉和固 定[2]。最后对锚固区域进行表面处理,使其与周围环境 相协调。在实施预应力锚固技术时,需要根据工程实际 情况选择合适的锚固类型和参数,并进行详细的设计计 算和分析。常用的预应力锚固类型包括拉力型锚索、压 力型锚索、摩擦型锚索等。拉力型锚索和压力型锚索是 利用拉伸力和压力对岩土体进行加固,摩擦型锚索则是 利用摩擦力对岩土体进行加固。在选择锚固参数时,需 要考虑岩土体的类型、性质、力学性能等因素, 以及工 程的具体要求和条件。其次, 预应力锚固技术的施工工 艺和技术要求较高。在施工过程中,需要严格控制钻孔 的位置、深度、直径和质量,确保锚索的安装位置和角 度符合设计要求。同时,需要进行严格的张拉和固定工 艺控制,确保锚索的预应力施加符合设计要求,从而保 证锚固的效果和质量。此外, 在施工过程中还需要注意 对周围环境的影响和保护,减少对周围植被和生态的破 坏。最后, 预应力锚固技术具有广泛的应用前景和发展 潜力。随着水利工程建设的不断发展和进步,预应力锚 固技术将会在更多的领域得到应用和发展。同时,随着 科技的不断进步和创新,预应力锚固技术的设计和施工 水平也将得到不断提高和完善。

2.3 施工导流技术

施工导流是水利工程施工中的一项重要技术措施,它直接影响着工程的施工质量和进度。在进行施工导流时,需要考虑河流的水文特征、地形地貌、气候条件等因素,制定合理的导流方案。常用的导流方法包括围堰法和束窄河床法等。在实际施工中,需要对导流方案进行详细的设计和论证,确保导流工程的顺利实施。首先,在进行施工导流前,需要对河流的水文特征、地形地貌、气候条件等进行详细的勘察和分析,并制定合理的导流方案。在选择导流方案时,需要考虑河流的自然条件、施工条件和技术经济因素,以及工程的设计要求和特点。常用的导流方法包括围堰法和束窄河床法等。围堰法是在河流两侧修建临时性的围堰,将河流改道至

一侧进行施工; 束窄河床法是将河流的一部分河道束 窄, 使水流集中于束窄后的河道中流过。在选择导流方 法时,需要根据河流的实际情况和工程要求进行综合考 虑和分析。其次,施工导流的实施需要结合工程的实际 情况进行科学合理的设计和施工。在设计和施工过程 中,需要考虑河流的水文特征、地形地貌、气候条件等 因素,以及工程的施工条件和技术要求。同时,需要进 行详细的设计计算和分析,确定围堰的结构型式、尺 寸、材料等参数,以及束窄河床法的束窄程度、河道改 道的长度和高度等参数。在施工过程中,需要严格控制 施工质量和安全,确保围堰的稳定性和防渗性能达到设 计要求,同时也要注意对周围环境的影响和保护。此 外,施工导流技术还需要注意以下几点:1)在设计和施 工过程中需要考虑河流的实际情况和工程要求, 制定科 学合理的导流方案; 2) 在施工过程中需要采取有效的措 施,确保围堰的稳定性和防渗性能达到设计要求;3)在 进行河道改道时需要考虑河流的水文特征和地形地貌条 件,确保改道的合理性和安全性;4)在施工过程中需要 采取环境保护和水土保持措施,减少对周围环境的影响 和破坏; 5) 在施工过程中需要合理安排施工进度和资源 利用,提高工程的施工效率和质量。

3 水利工程施工

3.1 施工准备阶段

在水利工程施工准备阶段,需要进行一系列的准备 工作,以确保工程的顺利实施。这些准备工作包括工程 项目的划分和施工组织的构建。首先,需要对工程项目 进行详细的分析和研究,了解工程的具体要求和特点。 在这个过程中,需要考虑工程的规模、复杂程度、施工 难度等因素,并确定相应的施工方案和施工技术措施。 这些方案和措施应当根据工程实际情况制定,并符合相 关规范和标准的要求。接下来,需要根据工程需要组建 相应的施工队伍和管理机构。施工队伍应当具备相应的 施工资质和经验,能够胜任工程的施工任务。管理机构 应当明确各方的职责和权利,建立完善的管理制度和流 程,确保工程的顺利实施。在施工准备阶段,还需要进 行施工现场的布置和安全设施的设立。施工现场应当根 据施工方案进行合理的布置,确保施工的顺利进行。同 时,应当设立相应的安全设施,保障施工现场的安全和 人员的生命财产安全。除此之外, 在施工准备阶段还需 要进行工程材料和设备的采购和租赁。这些材料和设备 应当符合工程需要和设计要求,并经过质量检验和验收 合格后方可投入使用。

3.2 施工实施阶段

根据施工方案和施工技术措施进行具体的操作和实 施。这一阶段的目标是完成工程项目的建设,达到设计 要求和质量标准。因此,需要对施工质量、进度和安全 进行全面控制和管理。首先, 遵循相应的规范和标准, 确保各项施工作业的顺利进行。这包括施工工艺、操作 规程、质量标准等方面的规定。同时,还需要加强对施 工现场的监督和管理,确保各项施工活动符合要求和标 准。其次,加强与各方的沟通和协调。这包括与业主、 设计单位、监理单位、供应商等各方的沟通和协调。通 过沟通协调,可以及时解决施工中出现的问题和矛盾, 确保工程的顺利进行。此外, 在施工实施阶段, 还需要 加强对工程质量的控制和管理。这包括对原材料、半成 品、成品的检验和验收,以及对施工过程的质量监督等。 通过对工程质量的控制和管理,可以确保工程的质量符合 设计要求和质量标准。最后,加强对工程进度的控制和管 理。这包括对施工进度的制定和监督,以及对施工过程中 的进度调整等。通过对工程进度的控制和管理,可以确 保工程按时完成,减少施工成本和资源浪费。

3.3 施工验收阶段

在水利工程施工验收阶段,是确保工程质量的重要环节。在这个阶段,需要对完成的工程进行质量检测和验收,确保工程符合设计要求和质量标准。这是工程交付和使用前最后一道质量把关,也是确保工程安全和稳定的关键环节。在施工验收阶段,首先需要进行全面的检查和评估。这包括对工程的外观、结构、材料、设备等进行检查,同时也需要对工程的施工记录、试验报告等进行审核。通过这些检查和评估,可以发现工程中可能存在的问题或安全隐患,并及时进行处理和整改。在进行质量检测和验收时,应当遵循相应的规范和标准,

确保各项检测和验收工作的科学性和准确性。这包括对 工程的结构稳定性、防水性、耐久性等进行检测, 同时 也需要对工程的电气、管道等配套设施进行验[3]。对于涉 及到工程安全和使用功能的部分,应当进行严格的检测 和验收,确保其符合质量要求。在施工验收阶段,还需 要加强与业主、设计单位、监理单位等各方的沟通和协 调。这包括对验收过程中发现的问题进行沟通和协商, 以及对整改措施的落实等进行协调。通过这些沟通和协 调,可以确保工程的质量问题得到及时处理和解决,避 免影响工程的交付和使用。在验收合格后,方可进行工 程的交付和使用。在这个过程中,需要向业主提供完整的 工程资料和技术文件,以便业主对工程进行管理和维护。 同时,还需要向相关部门提交验收报告和质量评估报告等 文件,以便对工程的质量进行追溯和管理。只有通过科 学、准确的检测和验收,才能确保水利工程的顺利交付 和使用, 为水利工程的建设和管理打下坚实的基础。

结语:总之,水利工程施工是一项复杂而重要的工作,需要遵循相应的规范和标准,确保工程的质量和安全。同时,需要加强与各方的沟通和协调,确保工程的顺利进行。通过科学合理的施工流程和技术措施,可以提高水利工程的建设效率和质量,为水利工程的建设和管理提供有力保障。

参考文献

[1]王卫强,王浩.水利工程施工技术措施及水利工程施工研究[J].科技风,2021(10):138.

[2]刘海龙,王海燕.水利工程施工技术措施及水利工程施工研究[J].建筑工程技术与设计,2020(11):348.

[3]张永强,王丽红.水利工程施工技术措施及水利工程施工研究[J].建筑工程技术与设计,2020(9):307.