工业废水处理工艺研究

冯佳珺

无锡金鹏环保科技有限公司 江苏 无锡 214000

摘 要:本文简要介绍了工业废水的危害,对工业废水处理工艺进行了深入研究,包括沉淀处理法、化学物质处理废水、吹脱法以及电化学氧化处理法等方面,并提出了一些能够提高工业废水处理工艺水平的有效措施,以有效地去除废水中的有害物质,提高水质,保护环境。

关键词: 工业; 废水处理; 处理方法

引言

随着工业的快速发展,工业废水排放量日益增加,对生态环境造成了严重威胁。如何有效处理工业废水,降低环境污染,已成为当前亟需解决的问题。工业废水具有种类繁多、污染物种类复杂的特点,因此需要针对不同行业和废水源的特性,研究开发高效、环保、节能的废水处理技术。

1 工业废水的危害

工业废水是指工业生产过程中产生的废水、污水和 废液,其中含有大量的有毒物质和有害化学物质。这些 废水的排放对环境和人类健康都会造成极大的危害。 (1)工业废水中的有毒物质和有害化学物质会破坏水生 态环境。其中, 重金属离子、有机污染物、氮磷等营养 物质都会对水生生物和微生物造成严重的危害。这些物 质进入水体后,会迅速扩散并积累在生物体内,从而对 整个水生态环境造成威胁。(2)工业废水中的有毒物质 和有害化学物质会对人类健康产生严重影响。这些物质 可以通过食物链进入人体,积累在人体内,从而对人体 产生潜在的危害。例如,某些有机污染物具有致癌、致 畸、致突变作用,会对人体健康造成长期影响;重金属 离子则会对人体的神经系统、消化系统、免疫系统等造 成危害。(3)工业废水往往含有大量的有毒物质和有 害化学物质,如果直接排放到河流、湖泊等水体中,会 污染饮用水源,对人体健康造成严重影响。在一些发展 中国家, 由于缺乏有效的污水处理设施和处理技术, 工 业废水往往直接排放到河流中,导致饮用水源受到严重 污染,从而引发各种疾病。(4)工业废水中的有毒物 质和有害化学物质会破坏土壤生态环境。这些物质可以 通过雨水淋溶、灌溉等方式进入土壤,导致土壤污染、 板结、盐碱化等问题。同时,这些物质也会通过食物链 进入人体,对人体健康产生潜在的危害。(5)随着工 业生产的不断发展,工业废水的产生量也在不断增加。

为了处理这些废水,企业需要投入大量的人力、物力和 财力,建立污水处理设施和处理技术。这些设施和技术 需要定期维护和更新,增加了企业的运营成本和管理难 度。同时,政府也需要投入大量的资金来建设污水处理 厂和处理设施,以保障环境和水资源的可持续发展。

2 工业废水处理工艺

2.1 沉淀处理法

沉淀处理法主要是通过添加化学药剂, 使废水中的 悬浮物和重金属离子等有害物质形成沉淀, 然后将沉淀 物分离出废水。根据添加药剂的不同, 沉淀处理法可以 分为化学沉淀法、混凝沉淀法和吸附沉淀法等。首先, 化学沉淀法主要是通过向废水中添加化学药剂, 使废水 中的重金属离子形成难溶的化合物,然后沉淀分离。常 用的化学药剂有石灰、硫化物等,可以针对不同的重金 属离子进行沉淀处理。化学沉淀法的优点是处理效果 好、成本低,但容易产生二次污染。其次,混凝沉淀法 主要是通过向废水中添加混凝剂, 使废水中的悬浮物和 胶体物质形成絮凝体,然后沉淀分离[1]。常用的混凝剂 有聚合氯化铝、聚合硫酸铁等。混凝沉淀法的优点是处 理效果好、适用范围广, 但需要控制混凝剂的用量和废 水pH值。最后,吸附沉淀法主要是通过将废水通过吸附 剂,使废水中的有害物质被吸附在吸附剂表面,然后分 离出废水。常用的吸附剂有活性炭、树脂等。吸附沉淀 法的优点是处理效果好、适用于高浓度废水, 但吸附剂 的用量和处理成本较高。沉淀处理法在工业废水处理中 有着广泛的应用, 主要用于去除废水中的重金属离子、 悬浮物等有害物质。在实际应用中,需要根据废水的水 质、水量和处理要求等因素选择合适的沉淀处理工艺和 技术。同时,还需要对沉淀后的污泥进行妥善处理和处 置,避免产生二次污染。

2.2 运用化学物质处理废水

运用化学物质处理废水是一种常见的废水处理方

法,该方法主要是通过向废水中添加化学物质,使其与 废水中的有害物质发生化学反应, 从而将有害物质转化 为无害物质或易于去除的物质。第一, 化学氧化法是一 种常用的废水处理方法, 主要是通过向废水中添加氧化 剂, 使废水中的有机物和还原性物质被氧化, 从而转化 为无害物质或易于去除的物质。常用的氧化剂有臭氧、 过氧化氢等。化学氧化法的优点是处理效果好、适用于 多种有机物和还原性物质的去除,但处理成本较高。第 二, 化学还原法主要是通过向废水中添加还原剂, 使废 水中的氧化性物质被还原为无害物质或易于去除的物 质。常用的还原剂有硫酸亚铁、亚硝酸盐等。化学还原 法的优点是处理效果好、适用于多种氧化性物质的去 除,但处理成本较高。第三,化学絮凝法主要是通过向 废水中添加絮凝剂, 使废水中的悬浮物和胶体物质形成 絮凝体, 然后沉淀分离。常用的絮凝剂有聚合氯化铝、 聚合硫酸铁等。化学絮凝法的优点是处理效果好、适用 范围广,但需要控制絮凝剂的用量和废水pH值。在实际 应用中,需要根据废水的水质、水量和处理要求等因素 选择合适的化学絮凝工艺和技术[2]。这些方法可以单独使 用,也可以联合使用,以达到更好的处理效果。在实际 应用中,需要根据具体情况选择合适的化学处理工艺和 技术,并注意控制化学药剂的用量和处理成本等问题。 同时,还需要对处理后的废水进行监测和检测,确保处 理效果符合相关标准和要求。

2.3 运用吹脱法

吹脱法主要是利用气体在液体中的溶解平衡原理, 通过向废水中通入气体, 使气体与废水中的溶解性气体 和挥发性有机物分离,从而达到去除的目的,常用的气 体有空气、氧气、氮气等。其工艺流程如下: (1)在吹 脱法处理前,需要对废水进行预处理,以去除大颗粒的 悬浮物和杂质,保证吹脱处理的正常运行。常用的预处 理方法包括沉淀、过滤等。这些方法可以有效地去除废 水中的悬浮物和杂质, 为后续的吹脱处理提供良好的水 质条件。(2)吹脱处理是吹脱法的核心环节。在废水中 通入气体, 使气体与废水中的溶解性气体和挥发性有机 物充分接触,促进溶解平衡的转移,使有害物质从废水 中分离出来。常用的吹脱设备包括填料塔、板式塔等。 这些设备中,气体与废水充分接触,形成气液两相流 动,加速了溶解性气体和挥发性有机物的释放。(3)经 过吹脱处理的废水进入气液分离器,将废水中夹带的气 体进行分离, 避免气体的干扰对后续处理产生影响。常 用的气液分离器包括旋风分离器、泡沫分离器等。这些 分离器通过不同的原理将废水中夹带的气体进行分离,

如旋风分离器利用离心力将气体从废水中分离出来,泡沫分离器则利用气泡的吸附作用将气体从废水中分离出来。(4)经过气液分离后的废水进入后续处理环节,根据废水的水质、水量和处理要求等因素选择合适的处理方法,如生化处理、活性炭吸附等。这些方法可以进一步去除废水中的有害物质,如有机物、氨氮等,使废水达到排放标准或回收利用的要求。(5)在吹脱处理过程中,可能会产生大量的气泡和泡沫,若处理不当,会对环境造成二次污染。因此,需要对二次污染进行控制。可以采取措施来减少二次污染的产生,如控制吹脱气体的流量和压力、使用消泡剂等。同时,还需要对产生的二次污染进行妥善处理,如对泡沫进行收集和处理、对废气进行排放标准检测等。

2.4 运用电化学氧化处理法

电化学氧化处理法主要是利用电化学反应将废水中 的有机物和无机物进行氧化,使其转化为无害物质或易 于去除的物质。该方法通过电解槽中的阳极反应,将废 水中的有害物质氧化,同时生成电流和氧气。电流的作 用是将有害物质氧化, 而氧气则可以去除废水中的还原 性物质。首先, 电化学处理是电化学氧化处理的核心环 节。在电解槽中,通过阳极反应将废水中的有害物质进 行氧化,同时生成电流和氧气[3]。阳极反应可以将有机 物和无机物氧化为无害物质或易于去除的物质, 而电流 和氧气则可以进一步去除废水中的有害物质。其次,经 过电化学处理后的废水进入分离和回收环节,将氧化后 的物质进行分离和回收。常用的分离方法包括沉淀、过 滤、吸附等。这些方法可以有效地将氧化后的物质从废 水中分离出来,为后续的回收利用提供良好的条件。最 后,经过分离和回收后的废水进入后续处理环节,根据 废水的水质、水量和处理要求等因素选择合适的处理方 法,如生化处理、活性炭吸附等,这些方法可以进一步 去除废水中的有害物质,如有机物、氨氮等,使废水达 到排放标准或回收利用的要求。

3 提升工业废水处理工艺水平的措施

3.1 加强废水处理技术研发

加强废水处理技术研发是提升工业废水处理工艺水平的关键。针对不同行业和不同废水源的特性,需要开展针对性的废水处理技术研发,以开发出高效、环保、节能的废水处理技术。第一,加强科研机构、大专院校和企业之间的产学研合作,形成联合研发机制,共同开展废水处理技术研发。通过产学研合作,可以充分利用各方优势,提高研发效率和成功率。同时,可以促进科研成果的转化和应用,推动废水处理技术的产业化发

展。第二,重点研发膜分离技术、高级氧化技术、生物强化技术、高效节能设备等关键技术,以进一步提高废水处理效率和处理效果。膜分离技术可以用于废水的分离和提纯,高级氧化技术可以用于废水的深度处理,生物强化技术可以提高废水的生物降解能力,高效节能设备可以降低废水处理的能耗。第三,建立废水处理技术评估和认证体系,对废水处理技术进行科学评估和认证,确保技术的可行性和环保性。评估和认证体系应该包括技术的先进性、可靠性、经济性、环保性等多个方面,以确保所研发的废水处理技术既高效又环保。第四,加强废水处理技术的推广和应用,将研发的技术转化为实际的生产力。通过举办技术讲座、开展技术交流等活动,向企业和公众推广先进的废水处理技术,提高废水处理的效率和效果。

3.2 推广废水循环利用

通过废水循环利用,可以减少废水的排放量,降低 对环境的污染,同时还可以提高水资源的利用效率,为 企业节约水资源成本。(1)加强废水循环利用的宣传和 教育,提高企业和公众对废水循环利用的认识和重视程 度。通过举办宣传活动、开展技术讲座、发布宣传材料 等方式,向企业和公众宣传废水循环利用的重要性和优 势,提高大家对废水循环利用的认知度和接受度。(2) 建立和完善废水循环利用标准体系,规范废水循环利用 行为。制定废水循环利用的相关标准和规范,包括废水 回收率、废水处理效果、设备技术要求等方面的标准和 规范,以便企业和公众参照执行[4]。同时,加强对废水循 环利用的标准和规范的宣传和推广,提高企业和公众对 标准和规范的认知和遵守力度。(3)发挥示范企业的引 领作用,推广废水循环利用的成功案例和经验。选取一 些在废水循环利用方面取得显著成效的企业作为示范企 业,通过宣传其成功经验和成果,向其他企业展示废水 循环利用的优势和效益,带动更多企业参与到废水循环 利用的实践中来。

3.3 优化废水处理流程

不同的行业和废水源具有不同的特点,因此需要针对具体情况优化废水处理流程,以提高处理效率并确保稳定的处理效果。一方面,不同的行业和废水源所产生的废水具有不同的特性和污染物种类,因此需要针对其特点选择合适的处理方法。例如,对于含有重金属的废水,一般采用化学沉淀法或离子交换法等处理方法,而对于含有有机物的废水,则可以采用生物降解法或活性炭吸附法等处理方法。另一方面,在了解不同行业和废水源特点的基础上,需要进一步结合实际情况对废水处理流程进行改进和优化。例如,采用高效分离技术、高效曝气技术等,以提高废水处理效率。同时,可以结合先进的信息化技术,建立数字化模型,对废水处理流程进行模拟和优化,以实现更高效的处理效果。

结语

综上所述,本文研究了工业废水处理工艺,通过对不同处理技术的比较和分析,得出了一些有益的结论。但是,工业废水处理工艺的研究和应用是一个长期而复杂的过程,需要不断地探索和创新。未来,我们需要进一步加强对工业废水处理工艺的研究和开发,为保护环境和人类健康做出更大的贡献。

参考文献

[1]吕伏建,李晓伟,徐雷金,黄国龙,陈永强,金新闯,杨迪迪.双氧水协同光催化技术在工业污水处理中的应用[J].染料与染色,2019,56(03):60-62.

[2]刘庆武.国外工业废水处理技术发展现状与对我国相关产业的启迪[J].环境与发展,2019(05):88-89.

[3] 田帅慧,康济溢.微电解-Fenton技术在工业废水处理中的应用分析[J].低碳世界,2019,9(05):27-28.

[4]陈蕊,徐菁,张钢强.高级氧化技术在难降解工业污水中的应用研究[J].环境科学与管理,2019,44(05):99-102.