水利施工围堰技术应用与施工

陈 亮 江苏省水利建设工程有限公司 江苏 扬州 225000

摘 要:水利施工围堰技术是水利工程建设中的重要组成部分,其应用范围广泛,包括防洪、灌溉、发电等多种领域。本文主要介绍了水利施工围堰技术的应用和加强维护和监测的措施。在应用过程中,需要注意安全、质量、环保和效率等问题,采取科学合理的措施,确保围堰施工的顺利进行和质量要求的达成。同时,加强维护和监测也是保障围堰正常运行和使用寿命的重要手段。

关键词:水利施工;围堰技术;应用与施工

引言

水利工程是人类利用自然、改造自然的重要手段, 是促进经济社会发展的重要基础设施。围堰是水利工程 施工中的重要组成部分,它可以在河道、渠道等水域修 建临时的挡水结构,保障施工期间河流水源的控制和调 节,对于提高工程施工质量和安全性具有重要作用。随 着科技的不断发展,水利施工围堰技术也不断进步和完 善,为水利工程建设提供了更加可靠的技术支持。

1 水利施工围堰技术的定义和重要性

水利施工围堰技术是指在水利工程建设过程中,通 过设置围堰来控制水流、防止水土流失和保护周边环境 的一种技术。它通常用于水库、湖泊、河流等水域的 施工,以确保施工安全和顺利进行。水利施工围堰技术 的重要性体现在以下几个方面: (1)保证施工安全: 在水利工程建设中,常常需要进行开挖、填筑、疏浚等 工作,这些工作可能会对周围水域造成影响,如水流冲 刷、泥沙淤积等。通过设置围堰,可以将施工区域与周 围水域隔离开来,防止水流对施工人员和设备造成威 胁,确保施工安全。(2)控制水流:在水利工程建设 中,有时需要对水流进行控制和调节,以保证施工的顺 利进行。例如,在河道整治工程中,需要对河道进行疏 浚、拓宽、加深等处理, 以改善河道的水流条件。通过 设置围堰,可以有效地控制水流,防止施工过程中的泥 沙和水流对周边环境造成影响[1]。(3)防止水土流失: 在水利工程建设中,常常需要进行土方开挖、填筑等工 作,这可能会导致水土流失。水土流失不仅会破坏周边 生态环境,还会对工程施工造成不利影响。通过设置围 堰,可以有效地防止水土流失,保护周边环境。(4)保 护周边环境: 水利工程建设往往会对周边环境产生一定 的影响,如水质污染、生物栖息地破坏等。通过设置围 堰,可以将施工区域与周围水域隔离开来,减少对周边 环境的干扰和破坏,保护生态环境。(5)提高施工效率:水利施工围堰技术可以提高施工效率。通过设置围堰,可以将施工区域与周围水域隔离开来,减少水流对施工的影响,使施工过程更加顺利和高效。同时,围堰还可以提供一定的工作空间,方便施工人员进行操作和设备的布置。

2 水利施工围堰技术的施工方法

2.1 土石围堰的施工方法

土石围堰是一种常见的水利工程施工方法,主要用 于河道、湖泊等水域的临时性围堰工程。首先,进行前 期准备工作。在施工前,需要对施工现场进行勘察和测 量,确定围堰的位置、形状和尺寸。同时,还需要进行 土石料的采集和运输工作,确保施工所需的材料充足。 此外,还需要制定详细的施工方案和安全措施,确保施 工过程的安全和顺利进行。其次,进行围堰的基础处 理。在施工开始之前,需要对围堰的基础进行处理,包 括清理杂物、平整地面等。如果基础条件较差,还需要 进行加固处理,如填筑土石料、打桩等,以确保围堰的 稳定性和安全性。再次,进行土石料的填筑工作。根据 设计要求,将土石料按照一定的层次和厚度进行填筑。 一般情况下,先填筑底层土石料,再逐层向上填筑,每 层都要进行夯实和整平。在填筑过程中,需要注意控制 填筑的均匀性和密实度,以确保围堰的整体稳定性和防 水性能。最后,进行围堰的护面和排水工作。在土石料 填筑完成后,需要进行护面的处理,以防止水流冲刷和 侵蚀。一般情况下,可以采用铺设防渗膜或混凝土护面 的方式进行处理。同时,还需要设置排水设施,如排水 管道、排水沟等,以确保围堰内部的排水畅通,避免水 患的发生。

2.2 混凝土围堰的施工方法

首先,进行前期准备工作。在施工前,需要对施工

现场进行勘察和测量,确定围堰的位置、形状和尺寸。 同时,还需要进行混凝土材料的采购和运输工作,确 保施工所需的材料充足。此外,还需要制定详细的施工 方案和安全措施,确保施工过程的安全和顺利进行。其 次,进行围堰的基础处理。在施工开始之前,需要对围 堰的基础进行处理,包括清理杂物、平整地面等。如果 基础条件较差,还需要进行加固处理,如填筑土石料、 打桩等,以确保围堰的稳定性和安全性。再次,进行模 板的搭建工作。根据设计要求,选择合适的模板材料, 按照预定的形状和尺寸进行搭建。一般情况下,可以采 用钢模板或木模板进行搭建。在搭建过程中,需要注意 控制模板的垂直度和水平度,以确保混凝土围堰的外观 质量和尺寸精度[2]。最后,进行混凝土的浇筑工作。在模 板搭建完成后,需要进行混凝土的浇筑工作。第一,将 混凝土材料按照设计比例进行配制,并进行搅拌混合。 第二,利用泵送设备将混凝土输送到施工现场,倒入模 板中。在浇筑过程中,需要注意控制混凝土的均匀性和 密实度,以确保围堰的整体稳定性和防水性能。

2.3 钢板桩围堰的施工方法

首先,进行前期准备工作。在施工前,需要对施工 现场进行勘察和测量,确定围堰的位置、形状和尺寸。 同时,还需要进行钢板桩材料的采购和运输工作,确 保施工所需的材料充足。此外,还需要制定详细的施工 方案和安全措施,确保施工过程的安全和顺利进行。其 次,进行围堰的基础处理。在施工开始之前,需要对围 堰的基础进行处理,包括清理杂物、平整地面等。如果 基础条件较差,还需要进行加固处理,如填筑土石料、 打桩等,以确保围堰的稳定性和安全性。再次,进行钢 板桩的安装工作。根据设计要求,选择合适的钢板桩材 料,按照预定的形状和尺寸进行加工和预制。然后,利 用起重机或振动锤等设备将钢板桩逐根打入地下, 形成 连续的围堰结构。在安装过程中,需要注意控制钢板桩 的垂直度和水平度,以确保围堰的整体稳定性和防水性 能。最后,进行围堰的护面和排水工作。在钢板桩安装 完成后,需要进行护面的处理,以防止水流冲刷和侵 蚀。一般情况下,可以采用铺设防渗膜或混凝土护面的 方式进行处理。同时,还需要设置排水设施,如排水管 道、排水沟等,以确保围堰内部的排水畅通,避免水患 的发生。

3 水利施工围堰技术的应用

3.1 水利围堰的设置

首先,确定围堰的位置和规模。在水利工程规划阶段,需要根据工程需求和水文地质条件确定围堰的位置

和规模。一般来说, 围堰应设置在河流或渠道的适当位 置,以便于实现对水流的控制和调节。同时,围堰的规 模应根据工程需求和实际情况进行合理确定, 以确保其 具备足够的承载能力和稳定性。其次,选择合适的围堰 类型。根据工程特点和水文地质条件的不同,可以选择 合适的围堰类型。常见的围堰类型包括土石围堰、混凝 土围堰、钢板桩围堰等。土石围堰适用于土质较好的河 道或渠道,具有施工简单、成本低廉等优点;混凝土围 堰适用于水流较急、水力冲击较大的情况, 具有较高的 抗冲刷性能;钢板桩围堰适用于深基坑或软土地区,具 有施工快速、适应性强的特点。再次,进行围堰的设计 和施工。根据确定的围堰位置和规模,以及选择的围堰 类型,进行详细的设计和施工方案制定。设计过程中需 要考虑水流力、土压力等因素,确保围堰具备足够的稳 定性和安全性。施工过程中需要注意施工工艺和质量控 制,确保围堰的施工质量和工期进度。最后,进行围堰 的运行和维护。水利工程建成后,需要对围堰进行运行 和维护管理。运行过程中需要定期检查围堰的稳定性和 安全性,及时发现并处理可能存在的问题。维护过程中 需要进行清理、修补等工作,保持围堰的良好状态。

3.2 合理选择围堰材料

首先,考虑围堰的使用环境和要求。在选择围堰材 料时,需要充分考虑围堰所处的使用环境和要求。例 如,如果围堰位于水流较急、水力冲击较大的河道或渠 道,应选择具有较高抗冲刷性能的材料,如混凝土或钢 板桩; 如果围堰位于土质较差的地区, 应选择具有较好 承载能力和稳定性的材料,如钢筋混凝土或灌注桩。其 次,考虑围堰的使用寿命和耐久性。围堰作为水利工程 的一部分,其使用寿命和耐久性直接关系到工程的安全 和可靠性。因此,在选择围堰材料时,需要考虑其使用 寿命和耐久性。一般来说,混凝土和钢板桩具有较高的 耐久性和使用寿命,适用于长期使用的水利工程;而土 石围堰则相对简单和经济,适用于短期或临时性的水利 工程。再次,考虑围堰材料的施工工艺和成本。不同材 料的施工工艺和成本也存在差异。在选择围堰材料时, 需要综合考虑施工工艺的可行性和成本的可控性。例 如,混凝土围堰需要进行模板制作、混凝土浇筑等工 艺,施工周期较长,成本相对较高;而土石围堰则施工 简单、成本低廉,但需要注意土质的选择和填筑工艺的 控制。最后,考虑围堰材料的环保性和可持续性。在当 前环境保护意识不断增强的背景下, 选择环保性和可持 续性较好的围堰材料也是重要的考虑因素。例如,可以 选择可回收利用的材料,如钢板桩;或者选择对环境影 响较小的材料,如生态袋等。

3.3 加强维护和监测

首先,建立健全的维护体系。水利工程管理部门应 制定详细的维护计划和标准,明确维护周期、内容和责 任人。同时,建立维护档案,记录维护情况和维护工 作的成果。此外, 应组织培训, 提高维护人员的技术水 平和维护意识。其次,定期进行巡视检查。定期巡视检 查是发现围堰问题和隐患的重要手段。根据维护计划, 制定巡视检查的频率和路线。在巡视过程中, 应注意围 堰的稳定性、渗漏情况、损坏程度以及周围环境的变化 等。对于发现的问题和隐患, 应及时采取措施进行处理 和修复[3]。再次,加强监测设备的使用和管理。现代科 技的发展为水利围堰的监测提供了更加便捷和准确的手 段。例如,可以使用水位计、流量计、测距仪和遥感技 术等设备对围堰进行检查和监测。在使用这些设备时, 需要保证其准确性和可靠性,并及时进行校准和维护。 同时,建立监测数据管理系统,将监测结果进行统计和 分析,为维护决策提供科学依据。最后,加强应急响应 能力。在围堰运行过程中,可能会出现突发事件,如洪 水、地震、滑坡等。为了应对这些事件,需要建立健全 的应急预案,并进行演练和培训。预案中应包括应急联 系人、应急资源和应急措施等内容。同时,应加强对周 边环境的监测,及早发现风险并采取措施加以防范。

3.4 加强人员培训和管理

首先,制定培训计划和内容。水利工程管理部门应根据维护工作的实际需求,制定详细的培训计划和内容。培训内容可以包括围堰的基本知识、维护技术和操作规程等。同时,还可以邀请专家学者进行讲座和培训,提供最新的技术信息和经验分享。其次,组织培训活动。根据培训计划,组织相应的培训活动。培训活动可以采取多种形式,如理论授课、实践操作和案例分析等。在培训过程中,应注重理论与实践相结合,通过实际操作和模拟演练等方式,提高维护人员的实际操作能力和问题解决能力。然后,建立考核评估机制。为了检验培训效果和提高维护人员的工作质量,需要建立考核

评估机制。考核评估可以包括理论考试、实操考核和综 合评价等环节。通过考核评估,可以发现维护人员的优 势和不足之处, 并针对性地进行补充培训和提升。再 次,加强管理措施。在人员培训的同时,还需要加强管 理措施,确保维护工作的顺利进行。管理措施可以包括 建立健全的责任制和奖惩机制, 明确维护人员的职责和 权益。同时,还应加强对维护人员的监督和管理,定期 进行工作检查和评估,及时发现问题并进行整改。最 后,持续改进和学习。人员培训和管理是一个持续改进 的过程。水利工程管理部门应不断总结经验和教训,及 时调整培训计划和管理措施。同时,还应鼓励维护人员 进行学习和自我提升,参加相关的学术会议和培训班, 了解最新的技术和发展趋势。通过制定培训计划和内 容、组织培训活动、建立考核评估机制、加强管理措施 以及持续改进和学习,可以提高维护人员的技术水平和 维护意识,确保围堰的正常运行和使用寿命。这不仅可 以提高水利工程的安全性和可靠性,还可以有效保护水 资源和生态环境的可持续发展。因此, 在水利工程中, 应高度重视人员培训和管理工作,并不断改进和完善相 关工作措施和方法。

结语

本文介绍了水利施工围堰技术的应用和施工过程,包括围堰的设置、设计、施工和运行维护等方面的知识。在围堰施工过程中,需要注意安全、质量、环保和效率等问题,采取科学合理的措施,确保围堰施工的顺利进行和质量要求的达成。同时,加强维护和监测也是保障围堰正常运行和使用寿命的重要手段。

参考文献

[1]徐冬梅,王世峰,王立新.水利施工围堰技术的应用研究[J].水利水电工程设计,2020,39(1):25-28.

[2]张志强,王亮,王大勇.水利施工围堰技术应用及施工方法探讨[J].水利水电工程设计,2019,38(2):55-58.

[3]王振华,王伟.水利施工围堰技术应用研究[J].水利水电工程设计,2018,37(3):16-19.