风电机组防雷系统及其维护

伏铜洲

甘肃国能风力发电有限公司 甘肃 兰州 730000

摘 要: 风电机组防雷系统是保护风电机组免受雷电损害的重要措施。本文介绍了风电机组防雷系统的基本构成和原理,包括避雷针、避雷带、浪涌保护器和等电位连接等组件。重点阐述了风电机组防雷系统的维护方法,包括定期检查、更新失效的防雷组件、加强相关人员的培训和知识普及等措施。通过这些措施的实施,可以有效地保障风电机组防雷系统的正常运行和安全,为风电场的稳定运行提供有力保障。

关键词:风电机组;防雷系统;维护

引言

风能是一种清洁、可再生的能源,风力发电在全球范围内得到了广泛的发展和应用。风电机组是风力发电的重要组成部分,其运行安全对于保障风电场的稳定运行具有重要意义。然而,风电机组在运行过程中可能会受到雷电的损害,因此需要采取有效的防雷措施来保护风电机组。本文旨在探讨风电机组防雷系统的基本构成和原理,以及如何进行有效的维护和管理。

1 风电机组防雷系统的原理

1.1 雷电的形成与危害

雷电是大气中的一种自然现象,通常在雷雨天气中 出现。它是由于带电的云层与地面之间或云层之间的放 电而产生的。雷电具有电流大、电压高、能量强等特 点,对风电机组等电力设施构成严重威胁。在雷电形成 过程中, 云层中的水滴、冰晶和尘埃在气流中不断碰撞 和摩擦,产生了静电,使云层带电。当云层与地面之间 的电位差达到一定程度时,就会产生闪电放电现象。这 个过程非常短暂,通常只有几十到几百微秒的时间,但 放电的能量却非常巨大。雷电的危害主要表现在以下几 个方面: (1)直接雷击: 当带电云层与地面或风电机组 等电力设施直接接触时,会产生直接雷击。这种雷击的 电流和电压都非常高,可以瞬间击穿空气,产生强大的 热能和机械能,对设备和建筑物造成严重破坏。(2)感 应雷击: 当带电云层在风电机组等电力设施附近时, 会 产生静电感应和电磁感应。静电感应是由于云层中的电 荷对地面或风电机组产生静电作用,导致设备表面出现 感应电荷; 电磁感应是由于云层中的电流产生磁场, 对 周围的金属物体产生电动势,导致设备过电压。感应雷 击虽然没有直接雷击那么强大, 但也会对设备和电力设 施造成一定程度的损害。(3)雷电波侵入: 当雷电放电 时,产生的电流和电压会以波的形式向周围传播。如果 这些雷电波传入风电机组或电力设施的线路中,就会对 设备和系统造成损害。此外,雷电波还会沿着线路传播 到更远的设备,造成更广泛的危害。

1.2 防雷系统的基本原理

风电机组防雷系统的基本原理是通过接闪器、引下 线和接地装置将雷电引入大地,从而保护风电机组免受 雷电损害。这个原理的实现涉及到以下几个主要环节: (1)接闪器:接闪器是防雷系统中的第一道防线,其 作用是吸引雷电并引导其流入大地。接闪器通常采用避 雷针、避雷带等,这些避雷设备具有较高的导电性能, 能够有效地将雷电引入防雷系统。(2)引下线:引下 线是连接接闪器和接地装置的导体, 其作用是将雷电电 流从接闪器引导到接地装置。引下线应具有足够的截面 积和导电性能,以保证电流能够迅速、顺畅地流入接地 装置。(3)接地装置:接地装置是防雷系统中的核心 部分,其作用是将雷电电流引入大地。接地装置包括接 地网和接地极, 其中接地网是由多个导体组成的网状结 构,可以扩大接地面积,提高导电性能;接地极则是 将电流引入地下的导体,通常采用镀锌钢棒或铜棒[1]。 (4)等电位连接: 等电位连接是防雷系统中不可或缺的 一部分, 其作用是将风电机组内部各金属部分连接在一 起,形成一个等电位体。这样,当雷电来临时,由于各 金属部分处于同一电位水平,可以减少电位差引起的电 磁干扰和电火花能量释放,从而保护风电机组内部的电 气设备不受损害。

2 风电机组防雷系统的结构

2.1 外部防雷系统

风电机组的外部防雷系统是整个防雷系统的重要组成部分,主要用于保护风电机组免受直击雷的损害。以下是外部防雷系统的主要组成部分: (1)避雷针。避雷针是风电机组防雷系统的核心设备之一,通常安装在

风电机组的塔筒顶部。避雷针的作用是将空中的带电云 层中的雷电吸引到自身尖端,然后通过引下线和接地装 置将雷电引入大地,从而保护风电机组免受直击雷的损 害。避雷针的安装位置和高度需要根据风电机组的实际 情况进行合理设计。在安装时,需要保证避雷针与风电 机组的距离适当,避免相互干扰。同时,避雷针的高度 也要根据周围环境、地形等因素进行选择, 确保其能够 有效地吸引雷电。(2)避雷带。避雷带是风电机组防 雷系统的另一种防雷措施,通常安装在风电机组的塔筒 和叶片上。避雷带的作用是防止雷电直接击中塔筒和叶 片,从而保护风电机组的安全。避雷带的材料和设计需 要根据风电机组的实际情况进行选择和设计。一般来 说,避雷带可以采用镀锌钢带、铜带等导电材料制作, 并按照一定的形状和规格进行设计, 以确保其能够有效 地防止雷电直接击中塔筒和叶片。(3)接地装置。接 地装置是风电机组防雷系统中的重要组成部分, 其作用 是将雷电电流引入大地,从而保护风电机组免受雷电损 害。接地装置的设计和施工需要考虑到多种因素,如地 质条件、土壤电阻率、接地电阻等等。一般来说,接地 装置需要按照一定的规范进行设计和施工,包括接地 网、接地极、引下线等部分的设计和施工都需要严格按 照规范进行。

2.2 内部防雷系统

(1) 浪涌保护器。浪涌保护器是内部防雷系统中的 重要设备之一, 其作用是限制电路中的过电压和过电 流,从而保护电路中的设备不受损害。浪涌保护器通常 安装在风电机组的控制柜、变频器等重要设备的前端, 用于防止雷电感应过电压对设备的损害。浪涌保护器的 工作原理是当雷电感应过电压出现时, 浪涌保护器能够 迅速地导通电路,将过电压和过电流引入地下,从而保 护设备不受损害。浪涌保护器的选择需要根据设备的实 际情况进行选择和设计,包括电压、电流、频率等参数 都需要根据设备的要求进行选择。(2)等电位连接。等 电位连接是内部防雷系统中的另一种措施, 其作用是将 风电机组内部各金属部分连接在一起,形成一个等电位 体。这样, 当雷电来临时, 由于各金属部分处于同一电 位水平可以减少电位差引起的电磁干扰和能量释放对设 备的损害。等电位连接通常采用焊接、压接等方法将各 金属部分连接在一起从而形成等电位体。在等电位连接 的设计和施工过程中需要注意以下几点: 1)需要对风电 机组内部各金属部分进行详细勘察, 确定连接方式和连 接位置。2)连接材料的选择需要考虑导电性能和机械强 度等因素,一般采用铜带或铝带作为连接材料。3)连接 方式的选择需要考虑施工难度和可靠性等因素,一般采用焊接或压接等方式进行连接。4)在等电位连接完成后需要进行测试和验收,确保连接质量和可靠性。

3 风电机组防雷系统的维护方法

3.1 定期检查接地装置

首先, 定期检查接地装置的接地电阻是必要的。接 地电阻是衡量接地装置性能的重要指标, 如果接地电阻 值过高,会导致电流无法顺畅地导入大地,从而影响防 雷效果。因此,维护人员需要定期使用专门的接地电阻 测量仪器对接地装置进行测量,确保其阻值符合规范要 求。通常来说,接地电阻的阻值应小于等于4欧姆。其 次,对接地网进行开挖检查也是必要的。有些情况下, 接地装置可能会出现断裂、锈蚀等问题,这些问题很难 通过常规检查发现。因此,维护人员需要定期对接地网 进行开挖检查,观察接地极的情况。如果发现接地极出 现锈蚀或其他问题,需要及时进行更换或修复,以确保 接地装置的正常运行。再次,在检查过程中,维护人员 还需要注意观察接地装置周围的土壤情况。如果土壤过 于干燥或过于潮湿,都会对接地装置的性能产生影响。 因此,维护人员需要根据实际情况采取相应的措施,如 增加湿度、加强排水等,以保持土壤适宜的湿度[2]。最 后,在定期检查过程中,维护人员还需要注意观察接地 装置的连接情况。如果发现连接部分出现松动或脱落, 需要及时进行紧固或重新连接。同时,还需要注意观察 连接部分的材料情况,如出现老化或损坏需要及时进行 更换。

3.2 检查避雷针和避雷带

首先,检查避雷针的垂直度和固定情况是非常重要 的。避雷针应与风电机组的塔筒或机舱的顶部垂直安 装,以确保其有效地吸引雷电。同时,避雷针的固定情 况也需要检查,确保其不会因风力等原因而松动或脱 落。如果发现避雷针有歪斜或松动的情况, 应及时采取 措施进行校正和固定。其次,检查避雷带的完好性和导 电性也是必要的。避雷带应沿着风电机组的塔筒和叶片 布置,并应完好无损,以确保其有效地引导雷电。同 时,避雷带的导电性也需要检查,以确保其能够有效地 传递电流。如果发现避雷带有损坏或导电不良的情况, 应及时进行更换或修复。再次,对于避雷针和避雷带的 材料和规格也需要进行检查。避雷针和避雷带应采用符 合规范要求的材料和规格,以确保其能够有效地保护风 电机组。同时,对于避雷针和避雷带的连接部分也需要 进行检查,以确保其连接牢固、可靠。最后,在检查过 程中还需要注意观察天气情况。如果天气情况恶劣,如 雷雨天气或大风天气等,应尽量避免检查避雷针和避雷带,以免发生危险。同时,在检查过程中还需要注意安全措施的采取,如穿戴防护服、避免接触金属物体等,以确保人身安全。

3.3 等电位连接的检查与维护

等电位连接是风电机组防雷系统中的另一个重要措 施,它的主要作用是将风电机组内部各金属部分连接在 一起,形成一个等电位体。这样,当雷电来临时,由 于各金属部分处于同一电位水平, 可以减少雷电电磁场 引起的能量释放对设备的损害。因此, 定期检查与维护 等电位连接是非常重要的。首先,定期检查等电位连接 的导通性是非常必要的。导通性是衡量等电位连接性能 的重要指标之一,如果导通性不良,会导致防雷效果下 降。因此,需要定期使用专门的导通性测试仪器对等电 位连接进行测试,确保其导通性良好。如果发现导通性 不良的情况,应及时采取措施进行维修或更换。其次, 检查等电位连接的牢固性和美观性也是必要的。牢固性 是保证等电位连接正常工作的基础,美观性则是保证设 备外观整洁的必要条件。因此,在检查过程中,需要确 保等电位连接的螺丝紧固、部件无松动、导线无破损等 情况。同时,还需要注意观察等电位连接是否美观大 方,是否与设备的整体外观协调一致。再次,对于等电 位连接的安装位置和数量也需要进行检查。等电位连接 应安装在风电机组内部设备的合适位置,并应按照规范 要求进行配置。如果发现安装位置或数量不符合规范要 求的情况,应及时进行调整或增加。最后,在检查与维 护等电位连接的过程中,还需要注意相关人员的安全。 由于等电位连接涉及到设备的电源和控制系统等方面, 因此需要由专业人员进行操作和维护。同时,在检查与 维护过程中,还需要采取必要的安全措施,如穿戴防护 服、避免接触带电部分等,以确保人身安全。

3.4 风电场防雷系统的整体维护

首先,建立完善的维护管理制度是整体维护的基础。风电场应制定详细的防雷系统维护管理制度,明确维护人员、职责、流程和标准等。同时,应建立完善的

维护档案,对每次维护进行详细记录,以便及时发现问 题并进行处理。其次,对风电机组的防雷系统进行重 点维护。风电机组是风电场的核心设备, 其防雷系统的 正常运行对于保障风电场的稳定运行具有重要意义。因 此,应加强对风电机组防雷系统的检查与维护,定期对 避雷针、避雷带、浪涌保护器等进行检查和维护,确保 其正常工作[3]。再次,对输电线路和变电站的防雷系统进 行维护。输电线路和变电站是风电场的重要组成部分, 其防雷系统的正常运行对于保障风电场的供电安全具有 重要意义。因此,应加强对输电线路和变电站防雷系统 的检查与维护, 定期对避雷针、避雷器、接地装置等进 行检查和维护,确保其正常工作。最后,加强相关人员 的培训和知识普及。防雷系统的正常运行需要相关人员 的共同努力和维护。因此,应加强对相关人员的培训和 知识普及,提高其防雷意识和应急处理能力,使其能够 及时发现问题并进行处理。同时还需要注意观察天气情 况在雷电天气期间应尽量避免对风电场设备的检查和维 护以免发生危险。通过这些措施的实施可以有效地保障 风电场防雷系统的正常运行和安全保障整个风电场的稳 定运行。

结语

总之,风电机组防雷系统是保护风电机组免受雷电 损害的重要措施。通过对避雷针、避雷带、浪涌保护器 和等电位连接等组件的合理设计和配置,可以有效地减 少雷电对风电机组的损害。然而,防雷系统的正常运行 不仅需要设计合理,更需要平时的维护和管理。因此, 建立完善的维护管理制度、加强相关人员的培训和知识 普及、及时检查和维护防雷系统等措施是非常必要的。

参考文献

[1] 蔡新举,朱林,王勇,等.风电机组防雷系统及其维护 [J].气象科技,2018(3):12-13.

[2]王建华,王新堂,高峰.风电机组防雷系统的研究与设计[J].农业工程学报,2019(5):13-15.

[3]刘海波,王宇,王红.风电机组的防雷与接地设计[J]. 电力系统保护与控制,2020(1):24.