水处理工艺技术应用研究

刘紫恩

武汉华德环保工程技术有限公司 湖北 武汉 430080

摘 要:随着水资源短缺和水污染问题日益严重,水处理工艺技术应用研究成为了当代社会的重要议题。本文综述了水处理工艺技术的研究现状和发展趋势,重点探讨了物理、化学和生物处理技术在去除污染物、提高水质方面的应用。同时,也介绍了在线监测技术和设备在水处理过程中的重要作用,它们为水处理工艺提供了实时、准确的数据支持,推动了水处理技术的智能化和自动化发展。通过不断研究和技术创新,我们有望解决水资源危机,保障人类的用水安全和生态环境的健康。

关键词:水处理工艺技术;自来水厂

引言

随着全球经济的快速发展和人口的不断增长,水资源短缺和水污染问题日益严重,已经成为制约社会可持续发展的重要因素。为了应对这一挑战,水处理工艺技术得到了广泛关注和深入研究。本文旨在探讨水处理工艺技术的最新研究进展和应用现状,分析不同处理技术的优缺点及适用范围,并展望未来的发展趋势。通过本文的阐述,希望能够为水处理领域的科研人员、工程师和管理人员提供有益的参考和启示,共同推动水处理技术的进步和发展,为保护水资源、改善水环境做出积极贡献。

1 常规给水处理方法

1.1 悬浮物、胶体物的去除

在给水处理中, 悬浮物和胶体物的去除是确保水质 清澈、安全的关键步骤。这些物质的存在不仅影响水的 外观,还可能携带病原体和有害物质,对人体健康告 成潜在威胁。悬浮物主要由不溶于水的固体颗粒组成, 它们在水中漂浮或沉降。这些颗粒可能来源于土壤侵 蚀、工业排放或生活污水等多种涂径。由于悬浮物颗粒 较大,它们可以通过沉淀和过滤等物理方法相对容易地 去除。相比之下,胶体物是由微小的固体或液体颗粒组 成,它们在水中形成稳定的分散体系。胶体颗粒由于尺 寸较小,通常不会自然沉降,而且能够长时间保持在水 体中。这使得胶体物的去除比悬浮物更具挑战性。传统 的给水处理工艺中,通常通过添加混凝剂来改变胶体颗 粒的表面电荷, 使其凝聚成较大的颗粒, 进而通过沉淀 或过滤去除。随着科技的进步,现代给水处理技术也在 不断发展。例如, 膜分离技术能够更有效地去除悬浮物 和胶体物,同时减少化学药剂的使用[1]。这些新兴技术为 给水处理领域带来了新的机遇和挑战。

1.2 改善氧化和消毒

改善氧化和消毒是给水处理中的关键步骤,对于确 保饮用水的安全性和质量至关重要。传统的氯气消毒方 法虽然广泛应用,但产生的副产品如氯仿、三卤甲烷 等被认为对人体健康有潜在危害。因此,寻找更为安全 有效的消毒方法成为当前的研究热点。臭氧消毒技术是 一种具有广泛应用前景的给水消毒方法。臭氧具有极强 的氧化能力和渗入细胞壁的能力, 能够迅速破坏细菌有 机体链状结构,从而达到高效杀菌消毒的效果。与氯气 相比, 臭氧消毒不产生有害的副产品, 且能够氧化二价 铁、锰和酚等有害物质,进一步改善水质。紫外线消毒 作为一种物理消毒方法, 在不向水中添加任何物质的情 况下,利用紫外线的辐射能量破坏细菌病毒的DNA结 构,从而达到杀菌消毒的目的。这种方法具有高效、快 速、无副产品的优点,且对水的理化性质无影响。紫外 线消毒设备简单、操作方便,适用于各种规模的给水处 理厂。随着科技的不断进步,新型的高级氧化技术如 臭氧-紫外线联合消毒、电化学氧化等也逐渐应用于给 水处理中。这些技术通过产生强氧化剂如羟基自由基 (•OH)等,能够快速降解水中的有机污染物,并杀灭 细菌病毒,进一步提高给水的安全性。改善氧化和消毒 是给水处理中的重要环节。通过采用更为安全、高效的 消毒技术,如臭氧消毒和紫外线消毒等,可以显著降低 给水中有害物质的含量,提高饮用水的质量和安全性。

1.3 活性炭吸附

活性炭是一种经过特殊处理的碳材料,具有极高的 比表面积和丰富的孔隙结构。这些特性使得活性炭具有 出色的吸附性能,能够吸附水中的多种污染物,包括 有机物、重金属离子、余氯等。因此,在给水处理中, 活性炭吸附技术被广泛应用。在给水处理过程中,活性 炭的吸附作用主要通过物理吸附和化学吸附两种方式实 现。物理吸附主要依靠活性炭与污染物之间的范德华力 进行吸附, 而化学吸附则是通过活性炭表面的官能团与 污染物发生化学反应而实现吸附。这两种吸附方式共同 作用, 使得活性炭能够有效地去除水中的多种污染物。 活性炭在给水处理中的应用具有多种优点。首先,活性 炭对多种污染物都具有很好的去除效果, 因此可以广泛 应用于各种水源的处理。其次,活性炭的吸附容量大, 使用寿命长,可以降低处理成本。此外,活性炭还具有 良好的再生性能,可以通过热再生、化学再生等方法进 行再生利用,进一步降低成本。然而,活性炭吸附技术 也存在一些局限性。例如,对于某些特定的污染物,活 性炭的吸附效果可能不够理想。此外,活性炭的再生过 程中可能会产生一些二次污染。因此,在实际应用中, 需要根据具体情况选择合适的活性炭类型和处理工艺。 总的来说,活性炭吸附技术是一种重要的给水处理技 术。它具有去除效果好、吸附容量大、可再生利用等优 点,但同时也需要注意选择合适的活性炭类型和处理工 艺以克服其局限性。

1.4 涡旋混凝低脉动沉淀给水处理技术

涡旋混凝低脉动沉淀给水处理技术是当前给水处理 领域的一项重要创新。通过巧妙结合涡旋流体力学原理 与低脉动沉淀技术,该技术显著提升了水处理的效率 与效果。在涡旋混凝过程中,特定设计的设备促使水流 形成涡旋,这不仅增加了混凝剂与水中杂质(如悬浮物 和胶体物)的接触面积,还通过优化的流体动力学条件 提高了混凝剂与杂质的反应效率。这种强化混凝作用为 后续的低脉动沉淀创造了更有利的条件。低脉动沉淀技 术则通过减少水流在沉淀池中的扰动,提供了一个相对 稳定的环境, 使得经过混凝处理后的微小颗粒能够更快 速、更有效地沉降。这一步骤不仅提高了沉淀效率,还 有助于减少出水中的悬浮物含量,从而确保出水水质的 稳定性和达标性。与传统的给水处理技术相比, 涡旋混 凝低脉动沉淀技术具有更高的处理效率、更低的运行成 本以及更小的占地面积, 使其在各种规模的给水处理厂 中具有广泛的应用前景。此外, 该技术的灵活性和可调 性使其能够轻松应对不同原水水质和处理要求的变化, 进一步增强了其实用性和可靠性[2]。

1.5 直接加氨处理技术

直接加氨处理技术是给水处理中的一种常用方法, 主要用于调节水的pH值和去除水中的重金属离子。这项 技术利用氨水或液氨作为调节剂,直接添加到原水中。 氨的加入可以与水中的酸性物质发生中和反应,从而提

高水的pH值,减少水的腐蚀性。同时,氨还能与水中 的某些重金属离子(如铜、锌等)形成稳定的络合物, 使其从水中沉淀下来,达到去除的目的。直接加氨处理 技术的优点是操作简单、成本低廉且效果显著。在实际 应用中,根据原水的pH值、重金属含量等水质参数, 可以灵活调整氨的投加量,以达到最佳的处理效果。然 而,这种方法也存在一定的局限性。例如,对于含有高 浓度重金属离子的水,可能需要大量的氨才能达到理想 的处理效果,这会增加处理成本并可能产生氨氮等二次 污染。此外,过量的氨投加也可能导致出水pH值过高, 对后续的水处理工艺和用水设备造成不利影响。因此, 在实际应用中,需要对氨的投加量进行精确控制,并配 备相应的监测和调控设备,以确保出水水质的稳定和达 标。直接加氨处理技术是一种有效的给水处理方法,尤 其适用于调节水的pH值和去除重金属离子。在实际应用 中,需要根据具体情况进行工艺设计和参数优化,以确 保出水水质的安全和稳定。

2 目前供水水厂处理工艺

2.1 生物预处理工艺

在供水水厂的处理流程中,生物预处理工艺在近年 来越来越受到关注。这一工艺主要利用生物体的代谢活 动,对原水中的有机物、氨氮等污染物进行生物降解 和转化,从而改善原水水质,为后续的物理、化学处理 提供更为有利的条件。生物预处理工艺通常包括生物滤 池、生物流化床、生物转盘等多种形式。其中, 生物滤 池是应用最为广泛的一种。在生物滤池中, 通过附着在 滤料表面的微生物膜对原水中的有机物进行吸附和降 解。这些微生物通过摄取水中的有机物进行生长和繁 殖,同时将有机物转化为二氧化碳和水等无害物质,从 而达到净化水质的目的。与传统的物理、化学处理方法 相比,生物预处理工艺具有能耗低、处理效果好、无二 次污染等优点。同时,生物预处理还能够有效去除水中 的氨氮等营养物质,防止后续处理过程中藻类等生物的 过度繁殖,保障供水水质的安全和稳定。在实际应用 中, 供水水厂会根据原水水质和处理要求选择合适的生 物预处理工艺,并进行相应的工艺设计和参数优化。同 时,为了确保生物预处理效果的稳定和可靠,还需要对 生物滤池等处理设施进行定期维护和管理,保持微生物 膜的良好活性[3]。

2.2 深度处理饮用水

随着社会的发展和生活水平的提高,人们对饮用水 质量的要求也越来越高。为了确保饮用水的安全性和口 感,供水水厂在处理过程中引入了深度处理饮用水工 艺。深度处理饮用水工艺旨在进一步去除水中的微量有 机物、重金属、病原微生物等有害物质。这些有害物质 可能来源于工业废水、农药残留、自然水体中的藻类 等,对人体健康构成潜在威胁。因此,通过深度处理工 艺,可以显著提高饮用水的质量,保障人们的健康。在 供水水厂中,深度处理饮用水工艺通常包括活性炭吸 附、膜分离、高级氧化等技术。活性炭吸附技术利用活 性炭的高比表面积和强吸附能力,有效去除水中的有机 物和余氯等,改善水的口感。膜分离技术则通过超滤、 纳滤和反渗透等膜材料,实现水中不同大小分子的分 离,从而去除病毒、细菌、重金属等有害物质。高级氧 化技术通过产生强氧化剂, 快速降解水中的有机污染 物,并提高消毒效果。这些深度处理技术的组合应用, 可以充分发挥各自的优势, 达到更好的处理效果。例 如,活性炭吸附与膜分离技术的组合,可以在去除有机 物的同时, 有效截留病毒和细菌; 而高级氧化技术与膜 分离技术的结合,则可以在去除有机污染物的同时,提 高消毒效果和延长膜的使用寿命。在实际应用中, 供水 水厂会根据原水水质和处理要求选择合适的深度处理工 艺,并进行相应的工艺设计和参数优化[4]。同时,为了确 保深度处理效果的稳定和可靠,还需要对处理设施进行 定期维护和管理。深度处理饮用水工艺在供水水厂中发 挥着重要的作用。通过去除水中的有害物质,可以显著 提高饮用水的安全性和口感,保障人们的健康。

3 处理工艺中在线监测技术和设备的应用模式

随着科技的进步,在线监测技术和设备在处理工艺中的应用日益广泛,为水处理过程提供了实时、准确的数据支持,显著提高了水处理的效率和质量。在线监测技术利用先进的传感器和自动分析仪器,对处理过程中的关键参数进行实时测量和监控。这些参数可能包括pH值、电导率、浊度、溶解氧、有机物含量等,它们直接反映了水质的变化和处理效果。通过在线监测设备,这些数据可以即时显示在操作界面上,或以数字、图形等形式进行远程传输,供管理人员实时掌握水处理过程的动态。在应用模式上,在线监测技术往往与自动控制系统相结合,形成闭环控制^[5]。当监测数据超出预设范围时,自动控制系统会及时调整处理设备的运行参数,确

保水质稳定达标。这种应用模式不仅提高了水处理的自动化程度,减少了人工干预,还有利于及时发现并解决问题,防止水质恶化或设备故障。此外,在线监测技术还具有数据记录和分析功能。通过对历史数据的挖掘和分析,可以揭示水质变化的规律和处理设备的性能特点,为优化处理工艺、提高处理效率提供科学依据。同时,这些数据也可以用于水处理厂的运行管理和绩效评估,提高管理水平和运营效率。总的来说,在线监测技术和设备在处理工艺中的应用模式体现了实时性、自动化和智能化的特点,它们已经成为现代水处理工艺不可或缺的重要组成部分。随着技术的不断进步和应用模式的创新,我们有理由相信在线监测技术将在未来发挥更加重要的作用,为保障水资源的安全和可持续利用做出更大的贡献^[6]。

结束语

随着水资源日益紧缺和水污染问题不断加剧,水处理工艺技术应用研究的重要性和紧迫性愈发凸显。本文回顾了水处理工艺技术的历史发展,总结了当前的主要技术方法和应用实践,并展望了未来的发展趋势。通过不断的技术创新和应用拓展,我们有信心在保障水资源安全、改善水环境质量的道路上取得更大的成就。让我们携手努力,共同推动水处理工艺技术的进步,为建设可持续发展的美好未来贡献力量。

参考文献

- [1]黄周满.水厂消毒技术应用与展望[J].科技创业月刊, 2019(1).
- [2]郭一飞,朱新锋,田艳兵.饮用水消毒技术发展现状[J].中国消毒学杂志,2019(2).
- [3]韩佳园,朱志.水处理技术现状及应用[J].安徽电气工程职业技术学院学报,2020(06).
- [4]李文博.自来水厂净水处理工艺探析[J].科技传播, 2018 (08).
- [5]吴志刚, 浅析脱盐水处理工艺技术的经济学思考 [J], 民营科技, 2020(10): 41-43.
- [6]李潇, 煤化工脱盐水处理工艺比对分析[D].呼和浩特:内蒙古大学, 2021 (5):21-23