变频器在火力发电系统工程应用中的干扰及解决方法

彭婷婷 赵庆涛 王乃庆 华能鹤岗发电有限公司 黑龙江 佳木斯 154100

摘 要:随着科技的进步和工业化的发展,变频器在火力发电系统中的应用越来越广泛。然而,其运行过程中所产生的电磁干扰问题也日益突出。本文旨在探讨变频器在火力发电系统中的干扰问题及其解决方法,以期提高系统的稳定性和效率。

关键词:火力发电系统;变频器;电磁干扰;解决方法

引言

变频器作为一种能够调节电机速度和转矩的装置, 广泛应用于各类工业生产中,包括火力发电系统。然 而,其运行过程中产生的电磁干扰(EMI)不仅可能影响 自身的正常工作,还可能对整个电力系统的稳定性造成 威胁。因此,研究并解决变频器的电磁干扰问题,对于 保障火力发电系统的安全和高效运行具有重要意义。

1 变频器在火力发电系统工程应用中的干扰来源和 影响

1.1 谐波干扰

在火力发电系统中,变频器作为重要的调速设备广 泛应用,但其产生的谐波干扰却成为一大问题。谐波干 扰主要来源于变频器中的整流电路, 当电流流经非线性 元件时,会产生谐波电流,这种谐波电流进而在系统阻 抗上形成电压降,导致供电电压波形发生畸变。谐波干 扰的影响是多方面的。首先,它可能引发电力设备的过 热,降低其使用寿命,甚至导致设备损坏。其次,谐波 会使电力系统的功率因数下降,增加线路损耗,降低系 统效率。再者,谐波还可能导致继电保护装置误动作, 威胁系统的安全稳定运行。最后,谐波会通过传导和辐 射的方式对同一电网中的其他设备产生干扰,影响其正 常工作。尤其在火力发电系统中,由于设备众多、系统 复杂,谐波干扰可能带来的风险更加突出。因此,必须 对变频器的谐波干扰问题给予足够的重视, 采取有效的 措施进行检测、评估和控制,以确保火力发电系统的安 全、高效运行[1]。

1.2 射频传导发射干扰

在火力发电系统中,变频器的应用广泛,但其产生的射频传导发射干扰成为了一个重要问题。这种干扰主要源于变频器在运行过程中产生的高频脉冲电流。这些高频成分在电力线路中传导,形成了射频传导发射干扰。射频传导发射干扰的影响具有一定的隐蔽性和广泛

性。首先,它可能对同一电网中的其他设备造成电磁干扰,影响其正常的工作状态。其次,这种干扰可能降低电力系统的信号质量,导致控制系统的不稳定甚至误动作。尤其在火力发电系统中,各种设备的工作状态需要精确控制,射频传导发射干扰可能带来的风险不容忽视。此外,射频传导发射干扰还可能对电网中的其他敏感设备产生影响,如测量仪器、保护装置等。这些设备在受到干扰时,可能无法准确反映电力系统的实际运行状态,从而增加了系统的运行风险。变频器的射频传导发射干扰是火力发电系统中一个需要关注的问题。其产生的源头在于变频器的工作特性,而其影响则可能涉及到电力系统的多个方面。为了保障火力发电系统的稳定运行,必须对这种干扰有深入的了解,并采取有效的措施进行管理和控制。

1.3 射频辐射干扰

在火力发电系统中,变频器的广泛应用带来了一种 常见的电磁干扰问题,即射频辐射干扰。这种干扰主要 源于变频器输入输出电缆上的射频干扰电流。当这些 电缆上有射频干扰电流流过时, 电缆就像天线一样, 会 产生电磁波辐射,从而形成射频辐射干扰。射频辐射干 扰的影响是多方面的。首先,它可能通过空间传播对周 围的其他电子设备和系统造成干扰,影响其正常工作。 特别是在火力发电系统中,各种设备和系统密集布置, 射频辐射干扰可能导致的问题更为突出。其次, 射频辐 射干扰还可能对人员健康产生一定影响,特别是在长时 间、高强度暴露的情况下。此外,这种干扰也可能导致 信息的丢失或误读,影响对火力发电系统的监控和控 制。在高度自动化的现代火力发电系统中,这种信息的 影响可能是非常严重的[2]。射频辐射干扰是变频器在火 力发电系统应用中一个不可忽视的问题。其来源主要是 变频器的输入输出电缆, 而其影响则可能涉及到系统设 备、人员健康以及信息传输等多个方面。为了保障火力

发电系统的安全、高效运行,必须对这种干扰有充分的 认识,并采取相应的措施来降低其影响。

2 变频器在火力发电系统工程应用中的干扰解决方法

2.1 选用合适的滤波器

变频器产生的电磁干扰是一个重要问题, 选用合适 的滤波器是解决这一问题的重要手段。合适的滤波器可 以有效地抑制变频器产生的高频谐波和射频干扰, 从而 保护系统中的其他设备免受电磁干扰的影响。在选择滤 波器时,需要考虑其频率响应、阻抗匹配和耐压能力等 因素。通常,针对变频器的干扰特点,可以选用具有高 性能滤波效果的专用滤波器,或者根据系统的实际情况 进行定制。同时,安装滤波器的位置也需要合理选择, 一般应尽可能靠近变频器的输入输出端, 以提高滤波效 果。此外,还需要注意滤波器的接地问题,确保其具有 良好的接地性能,以避免出现共模干扰等问题。最后, 需要定期检查和维护滤波器,确保其性能处于良好状 态。如果出现滤波器老化或损坏等情况,应及时更换, 以避免出现电磁干扰问题[3]。选用合适的滤波器是解决变 频器在火力发电系统中电磁干扰问题的有效方法。在选 择和安装滤波器时,需要根据系统的实际情况进行合理 设计和布局,以达到最佳的滤波效果。

2.2 优化布线设计

在火力发电系统中,变频器干扰问题是一个重要的 考虑因素。除了使用滤波器外,优化布线设计也是一个 非常有效的解决方法。布线设计在抑制电磁干扰中起 着至关重要的作用。不合理的布线设计可能导致干扰的 增强和传播,而良好的布线设计则能显著减少干扰的产 生和影响。首先,尽量缩短变频器的输入输出线长度。 长线路会增加电磁干扰的产生和传播机会。通过合理规 划线路走向和长度,可以减少线路上的干扰电流,从而 降低干扰的水平。其次,避免与其他设备的线路平行布 置。平行布置可能导致电磁耦合,增加干扰的可能性。 在设计布线时, 应尽量将变频器的线路与其他敏感设备 的线路垂直或交叉布置,以减少电磁干扰的耦合效应。 此外,使用屏蔽电缆或金属管进行保护也是一种有效的 布线设计优化措施。屏蔽电缆或金属管可以阻止电磁干 扰的传播,降低对周围设备的影响。在选择电缆或金属 管时,需要考虑其屏蔽效果和耐用性,以确保其能够有 效地起到抗干扰的作用。最后,布线设计的合理性还需 要结合实际情况进行综合考虑。在实际工程中, 可能需 要根据设备的布局、电源线路的长度和走向、以及周围 电磁环境等因素进行灵活调整, 以达到最佳的布线效 果。优化布线设计是解决变频器在火力发电系统中电磁 干扰问题的重要方法之一。通过缩短线路长度、避免平行布置、使用屏蔽措施,并结合实际情况进行综合调整,可以有效地降低电磁干扰的产生和传播,提高火力发电系统的稳定性和可靠性。

2.3 采用屏蔽措施

屏蔽是一种物理原理,通过将电磁场限制在屏蔽体 内部, 防止其向外扩散, 从而减少对外部设备和系统的 影响。在变频器干扰问题中,我们可以采用屏蔽电缆、 屏蔽罩等屏蔽措施来降低电磁干扰的影响。首先,对于 变频器的输入输出电缆, 我们可以选择使用屏蔽电缆。 屏蔽电缆在结构上增加了一层金属屏蔽层, 能够有效地 阻挡电磁干扰的传播。同时,在选择屏蔽电缆时,还需 要注意其屏蔽效果和耐用性,以确保其能够长期有效地 工作。其次,对于变频器本身,我们可以采用屏蔽罩进 行屏蔽。屏蔽罩是一种金属壳体,能够将变频器包裹在 其中, 防止其产生的电磁干扰向外扩散。在选择屏蔽罩 时,需要考虑其材质、厚度和接地方式等因素,以确保 其具有良好的屏蔽效果。需要注意的是, 屏蔽措施的实 施需要根据具体情况进行灵活调整。例如,在选择屏蔽 电缆和屏蔽罩时,需要考虑设备的布局、电源线路的长 度和走向等因素,以确保屏蔽措施能够有效地起到抗干 扰的作用。此外,还需要定期检查和维护屏蔽措施的有 效性。例如,对于屏蔽电缆,需要定期检查其屏蔽层是 否有损伤或老化等情况;对于屏蔽罩,需要确保其接地 良好,以避免出现共模干扰等问题[4]。采用屏蔽措施是解 决变频器在火力发电系统中电磁干扰问题的有效方法之 一。通过合理选择屏蔽电缆和屏蔽罩等屏蔽措施,并根 据实际情况进行灵活调整和维护, 可以有效地降低电磁 干扰的影响,提高火力发电系统的稳定性和可靠性。

2.4 加强接地处理

加强接地处理可以有效地降低电磁干扰的影响,提高系统的稳定性和可靠性。接地处理的主要目的是提供一个低阻抗的通道,将电磁干扰电流引入大地,从而避免对设备和系统造成损害。为了实现有效的接地处理,有几个关键方面需要注意。首先,要确保接地电阻的低阻值。接地电阻的大小直接影响到接地效果的好坏。通过选择合适的接地材料和设计合理的接地系统,可以降低接地电阻,提高接地效率。其次,要采用多点接地的方式。多点接地可以有效地分散干扰电流,避免单点接地时可能出现的接地电位差和地电流回路问题。同时,多点接地还可以提高系统的可靠性和稳定性。此外,要注意接地线的布局和连接。接地线的布局应尽量短而直接,以减少电阻和电感的影响。同时,要确保接地线的

连接牢固可靠,避免出现接触不良或松动的情况。最后,需要定期对接地系统进行检查和维护。定期检查接地电阻的值,确保其处于规定范围内;检查接地线和接地点的状态,及时修复或更换损坏的部分。除了以上措施外,还应加强对接地处理重要性的宣传和培训。让工程人员充分了解接地处理在解决变频器干扰问题中的作用,提高其对接地处理的重视程度,确保接地处理措施得到有效实施。

2.5 软件抗干扰措施

除了硬件方面的解决方法,软件抗干扰措施也扮演 着重要的角色。软件抗干扰措施的核心思想是通过算法 和程序设计,提高系统对干扰的抵抗能力,以保证设 备的正常运行。具体而言,可以采用以下软件抗干扰方 法来解决变频器干扰问题。首先,可以采用数字滤波技 术。通过编写适当的滤波算法,可以对输入信号进行处 理,去除其中的高频噪声和干扰成分,从而提取出真实 的信号。这种技术可以有效地降低变频器产生的电磁干 扰对信号质量的影响。其次, 合理设计控制系统的软件 架构也是关键。采用模块化设计和冗余备份技术可以提 高系统的可靠性和稳定性。通过增加错误检测和纠错机 制,可以及时发现和纠正干扰引起的错误,防止其扩散 到整个系统。此外,适当运用信号处理和时间同步技术 也有助于降低干扰的影响。通过精确控制信号采样时间 和处理周期,可以减少由于时间偏差引起的干扰问题。 同时,采用合适的算法对信号进行平滑处理,可以降低 干扰对系统性能的影响。最后,及时更新和维护软件系 统也是至关重要的。随着技术的不断进步和干扰环境的 变化,软件系统可能需要适应新的情况。定期更新算 法、修复漏洞和进行性能测试,可以确保软件抗干扰措 施的有效性。

2.6 选用低干扰变频器

在火力发电系统中,变频器作为关键设备,其产生的电磁干扰问题备受关注。为了降低干扰,选用低干扰变频器成为一种有效的解决方法。低干扰变频器采用先进的技术和设计,能够在工作过程中最大程度地降低电磁干扰的产生。它具备高效的电磁屏蔽措施和内部滤波机制,从源头上减少了干扰的可能性。与传统的变频器相比,低干扰变频器在工作时产生的谐波和射频干扰

较小,对周围设备和系统的影响也相对较低。这得益于 其优化的电路设计和控制算法, 使得电流的流动更加平 稳,减少了高频谐波的产生。此外,低干扰变频器还具 备良好的电磁兼容性。它能够在强电磁干扰环境下正常 工作,不受外界电磁干扰的影响。这一特点使得低干扰 变频器在火力发电系统中具有更广阔的应用前景。选用 低干扰变频器还需要考虑其性能和适应性。在选择时, 需要根据实际需求和系统要求进行合理匹配。同时,低 干扰变频器也需要与其他设备和系统进行良好的配合, 以确保整个系统的稳定性和可靠性[5]。最后,选用低干扰 变频器不仅能够解决电磁干扰问题,还能够带来节能和 环保的效益。由于其高效的能量转换和控制性能,低干 扰变频器可以降低能源消耗,减少对环境的影响。选用 低干扰变频器是解决变频器在火力发电系统中电磁干扰 问题的有效方法之一。通过采用先进的技术和设计,低 干扰变频器能够降低电磁干扰的产生和传播,提高系统 的稳定性和可靠性。

结语

变频器在火力发电系统中的应用面临着电磁干扰的 挑战,但通过选用低干扰变频器、加强接地处理、优化 布线设计、选用合适的滤波器以及采取软件抗干扰措 施,可以有效地解决这些问题,确保火力发电系统的稳 定运行。未来,随着技术的进步和研究的深入,相信会 有更多创新的解决方法涌现,为火力发电系统中变频器 的应用提供更加可靠和高效的解决方案。

参孝文献

- [1]曹希胜,张恩圆.变频器在电力系统工程应用中的干扰[J].科学技术创新,2019(14):62-63.
- [2]赵九洲,游玲玲,于天雷.变频器对电力系统干扰问题的解决措施[J].电工技术,2020,{4}(18):100-101.
- [3]郝晓亮,付立军,马凡,刘鲁锋,肖润龙.中压直流综合电力系统建模与实时仿真实现方法[J].电网技术,2021,45 (03):1100-1109.
- [4]刘志强.变频器在电力系统工程应用中的干扰及解决方法[J].城市建设理论研究(电子版),2020,{4}(16):6.
- [5]曹希胜,张恩圆.变频器在电力系统工程应用中的干扰及解决方法[J].科学技术创新,2019,{4}(14):62-63.