道路路基排水设计及创新应用研究

贾冠伟

张家口路发高速公路养护有限责任公司 河北 张家口 075000

摘 要:道路路基排水设计旨在保障路基常年干燥稳定,提高道路整体稳定性和行车安全性。设计需遵循总体规划、合理布局、少占耕地、环保及与当地排水系统协调等原则。创新应用包括采用新型基层材料、塑料盲沟等排水材料,及与道路设施综合设计的方法,以应对多雨、寒冷及地下水位高等特殊环境挑战。本文详细阐述了路基排水设计的重要性、理论基础、设施设置、构造要点及创新应用方向。

关键词: 道路路基; 排水设计; 创新应用

引言: 道路路基排水设计是道路工程中不可或缺的 重要环节,直接影响道路的稳定性和使用寿命。随着交 通量的增加和极端气候的频发,对路基排水系统提出了 更高的要求。本文旨在探讨路基排水的理论基础与设计 原则,分析地表与地下排水设施的设置与构造,并着重 介绍创新应用研究,以期为提升道路排水效能、保障行 车安全提供科学依据和技术支持。

1 道路路基排水设计基础理论

1.1 路基排水的目的与原则

1.1.1 路基排水的目的

路基排水的核心目的是确保路基常年处于干燥稳定状态,从而提高道路的整体稳定性和行车安全性。具体来说,排水工程旨在将路基范围内的土基湿度降低至一定限度以内,防止因水分过多导致的路基湿软、强度下降等问题。干燥的路基能够维持足够的强度和稳定性,有效抵御地面水和地下水的侵蚀,减少因水患导致的路基病害,延长道路使用寿命。

1.1.2 设计原则

(1)总体规划、合理布局:路基排水设计需从全局出发,进行综合考虑,确保排水系统的科学性、合理性和高效性。各项排水设施的设置应相互配合,形成完善的排水网络,以便快速、有效地排除路基范围内和周边的水分。(2)少占耕地:在排水设计中,应尽可能减少耕地占用,保护土地资源。这要求设计人员充分利用现有地形和地貌,优化排水路线,避免无谓的土地浪费。(3)环保原则:路基排水设计需遵循环保理念,防止排水过程中造成环境污染。这包括防止水土流失、保护水源、减少噪音和尘土污染等措施。同时,还应注重排水设施的可持续性,确保其在长期使用过程中不会对生态环境造成负面影响。(4)与当地排水系统协调:路基排水设计应与当地的自然水系、农田水利建设等相协调,

充分利用现有排水设施,提高排水效率。同时,还需考虑未来排水设施的扩展和维护需求,确保排水系统的可持续发展^[1]。

1.2 危害路基水的来源与类型

(1)地面水。地面水主要包括大气降水(如雨水、 雪水等)和地表径流。这些水源在降水或地表水流作用 下,容易形成对路基的冲刷和渗透作用。冲刷作用会损 害路基的整体稳定性,导致水毁现象;而渗透作用则 会降低路基的强度,影响行车安全。此外,地面水还可 能引发边坡滑坍等灾害性事件,对道路造成严重损害。 (2)地下水。地下水则主要来源于岩石或土层的孔隙、 裂隙中的水,包括泉水、潜水、层间水等。地下水对路 基的危害主要体现在以下几个方面:一是使路基湿软, 降低其强度;二是引起冻胀、翻浆等病害现象;三是可 能导致边坡滑坍或整个路基沿倾斜基底滑动。在极端情 况下,地下水还可能造成掺有膨胀土的路基工程毁灭性 的破坏。因此,在路基排水设计中,必须充分考虑地下 水的危害并采取相应的排水措施加以防范。

2 道路路基排水设施的设置与构造

2.1 地表排水设施

地表排水设施是道路路基排水系统的重要组成部分,它们直接面向大气降水和地表径流,通过合理的设置与构造,有效引导并排除这些水源,保护路基免受水害。(1)边沟。边沟是设置在路基两侧用于汇集和排除路面、路肩及边坡表面流水的纵向排水设施。根据地形、地质和水文条件的不同,边沟可采用多种类型,如梯形、矩形、三角形和流线型等。设计要点包括确定边沟的断面尺寸(底宽、深度、边坡坡度)、纵坡以及与其他排水设施的衔接方式。梯形边沟因其结构稳定、易于施工而最为常用;矩形边沟则适用于地质条件较好、水流量不大的路段;三角形边沟适用于地形陡峭、空间

有限的情况;流线型边沟则具有更好的水流导向性和抗 冲刷能力。边沟的适用范围广泛,几乎覆盖了所有需要 地表排水的道路路段。(2)排水沟、截水沟。排水沟主 要用于将路基范围内的水流引导至边沟或天然沟谷中, 其位置通常根据地形和水流方向确定。设计排水沟时, 需考虑其纵坡、横断面尺寸以及与其他排水设施的衔 接,以确保水流顺畅排出。截水沟则是一种设置在挖方 路基边坡上方或填方路基边坡上方的横向排水设施,用 于拦截并排除路基上方流向路基的地表水。截水沟的位 置选择至关重要,需充分考虑地形、地质和水文条件, 以确保其有效拦截并排除水源。设计截水沟时,还需注 意其断面尺寸、纵坡以及与其他排水设施的协调配合[2]。 (3)急流槽、蒸发池等其他设施。急流槽是一种用于 引导水流快速通过的槽形排水设施,通常设置在坡度较 陡、水流速度较快的路段。其设计需考虑槽身的稳定 性、抗冲刷能力以及水流速度的控制。蒸发池则是一种 利用自然蒸发作用减少水量的设施,适用于干旱或半干 旱地区。蒸发池的设计需考虑其面积、深度以及周围环 境的影响因素,以确保其有效蒸发并减少对环境的不良 影响。此外,还有其他一些地表排水设施如集水井、检 查井等,它们各自具有特定的功能和适用范围,在路基 排水系统中发挥着重要作用。

2.2 地下排水设施

地下排水设施主要用于排除路基范围内的地下水, 防止其对路基造成危害。这些设施通常设置在路基内部 或底部,通过合理的构造和布局,实现地下水的有效收 集和排放。(1)盲沟。盲沟是一种埋设在路基内部或底 部的横向或纵向排水设施, 其作用是将路基范围内的地 下水汇集并引导至排水出路。盲沟的设计需遵循一定的 原则,如确保水流顺畅、防止淤塞以及减少对路基的破 坏等。其断面尺寸根据地下水量和排水要求确定,通常 包括沟底宽度、深度和边坡坡度等参数。盲沟的施工需 精心组织,确保其质量符合设计要求。(2)渗沟、渗 井。渗沟和渗井是两种常见的地下排水设施,它们通过 渗透作用将地下水汇集并排放至排水出路。渗沟通常沿 路基纵向或横向设置, 其构造包括沟壁、沟底和渗滤层 等部分。渗滤层采用透水性良好的材料制成,以确保地 下水能够顺利渗透并汇集。渗井则是一种垂直设置的排 水设施, 其构造类似于水井但具有更大的渗滤面积。渗 井适用于地下水位较高、水量较大的路段。渗沟和渗井 的施工需严格控制质量,确保其在使用过程中能够持续 发挥排水作用。

3 道路路基排水设计的创新应用研究

3.1 创新基层设计

(1)沥青处治材料、贫混凝土、水泥等基层材料的 应用。在路基排水设计中,基层材料的选择与应用直接 影响着排水效果。传统的沥青处治材料因其良好的粘结 性、抗水性和耐久性,在路基排水中发挥着重要作用。 通过优化沥青混合料的配比和施工工艺,可以有效提升 基层的排水性能,减少水损害的发生。贫混凝土作为一 种高强度、低收缩性的材料,广泛应用于重载交通道路 和高速公路的基层。其密实的结构和优异的抗渗性能, 能够有效防止地下水渗透和路面水损坏。水泥稳定类 材料如水泥稳定碎石基层,则以其高强度和良好的稳定 性,在多种地质条件下均表现出色。通过合理设计水泥 用量和级配,可以进一步提高其排水和抗冲刷能力[3]。 (2)特殊地质条件下的基层设计。在特殊地质条件下, 如软土路基和风化砂路基,基层设计需更加精细和灵 活。软土路基由于其承载力低、易变形,排水设计需注 重地下水位的控制和排水设施的设置。采用砂井、塑料 排水板等竖向排水设施,结合预压加固技术,可以加速 软土固结,降低地下水位,提高路基稳定性。同时,在 基层材料选择上,可优先考虑轻质材料或加筋技术,以 减轻路基自重,增强其抗变形能力。风化砂路基因其颗 粒细小、透水性差,易形成软弱层。因此,在排水设计 中需采用透水性好的基层材料, 如透水混凝土或级配碎 石,并设置横向排水槽或盲沟等排水设施,及时排出路 基内的积水。

3.2 新型排水材料的应用

(1)塑料盲沟。塑料盲沟作为一种新型排水材料, 以其独特的三维立体网状结构和高效的排水性能,在道 路路基排水设计中得到了广泛应用。其优点包括重量 轻、耐腐蚀、施工方便、排水效果好等。在施工过程 中,塑料盲沟可根据实际需要进行裁剪和拼接,以适应 不同的地形和排水要求。同时,其内部的多孔结构能够 有效防止细粒土堵塞,保持排水系统的长期畅通。应用 实例中, 塑料盲沟常被用于高速公路、城市道路的边 沟、截水沟以及路基内部的横向排水系统中,显著提升 了道路的排水能力和使用性能。(2)HDPE复合土工 膜、透水混凝土等新材料。HDPE复合土工膜是一种高性 能的防渗材料,具有优异的耐低温、抗老化、耐腐蚀等 特性。在路基排水设计中, HDPE复合土工膜常被用作隔 水层或防渗层,有效阻止地下水对路基的侵蚀。同时, 其良好的柔韧性和焊接性能, 使得施工过程更加简便快 捷。透水混凝土则是一种新型的环保材料,其内部的多 孔结构使得雨水能够迅速渗透并通过路面结构层排出。

在路基排水设计中,透水混凝土的应用可以显著降低路面径流系数,减轻城市排水系统的压力,同时改善生态环境^[4]。

3.3 排水系统的综合设计

(1)排水系统与道路设施的协调设计。排水系统的 综合设计需考虑与道路设施的协调配合。例如,在中央 分隔带排水设计中,需设置纵向排水沟和横向排水管等 设施,确保分隔带内的积水能够及时排出。同时,还需 考虑分隔带内的绿化和植被对排水系统的影响, 避免堵 塞或破坏排水设施。在路面结构内部排水设计中,则需 设置透水层、排水层和防水层等结构层次,形成完整的 排水体系。通过合理设计各层材料的配比和施工工艺, 可以实现雨水的快速渗透、收集并排出,有效保护路基 和路面结构不受水损害。此外,排水系统与道路设施的 协调设计还应关注路面边缘的排水处理。例如,在路肩 处设置排水边沟, 与路面结构内部排水系统相连, 确保 路面边缘的积水能够迅速排出,避免积水滞留导致的路 面损坏和行车安全隐患。同时,对于桥梁、隧道等特殊 构造物, 其排水设计需根据具体情况进行专门规划, 确 保排水系统能够满足特殊环境下的使用要求。(2)暴雨 强度重现期的确定与排水设施规模的合理计算。在排水 系统设计中, 暴雨强度重现期的合理确定是关键环节之 一。暴雨强度重现期是指某一强度的暴雨在一定年限内 可能重复出现的平均间隔时间,它直接影响着排水设施 的设计规模和造价。根据当地的气候特点和降雨历史数 据,科学合理地确定暴雨强度重现期,可以确保排水设 施在遭遇不同强度的暴雨时仍能保持稳定运行,有效避 免水灾事故的发生。同时,排水设施规模的合理计算也 是排水系统设计的核心内容之一。在计算过程中, 需充 分考虑汇水面积、地形坡度、土壤渗透性等因素对排水 流量的影响,采用科学的计算方法和模型,对排水设施 的规模进行精确计算。这不仅可以确保排水设施满足实 际排水需求,还能避免不必要的投资浪费,提高工程经 济效益。

3.4 特殊环境下的排水设计

(1)多雨地区、寒冷地区的排水设计难点与解决方案。多雨地区面临着降雨量大、降水频繁等挑战,排水设计需更加注重排水系统的排水能力和稳定性。在多雨

地区,需适当增加排水设施的数量和规模,提高排水 系统的排水能力。同时,还需优化排水设施的布局和设 计,确保排水系统能够迅速响应降雨事件,减少积水滞 留时间。此外,还需加强排水设施的维护和管理,确保 其长期有效运行。寒冷地区则需考虑低温对排水系统的 影响。在寒冷地区,排水设施需具备抗冻融性能好的特 点,以防止因结冰而堵塞或损坏。同时,还需注意排水 系统的保温措施,确保其在低温环境下仍能正常运行。 在材料选择上,可优先考虑耐低温、抗冻融性能好的材 料,如HDPE复合土工膜等。(2)地下水位较高地区的 路基排水设计。在地下水位较高的地区,路基排水设计 需更加注重地下水位的控制和排水设施的设置。首先, 需对地下水位进行详细勘测和预测,了解地下水的分布 规律和变化趋势。然后,根据勘测结果和地质条件,选 择合适的排水材料和设计方案。例如,可采用塑料盲 沟、HDPE复合土工膜等新型排水材料,形成高效的排水 系统。同时,还需设置降水井、真空预压等竖向排水设 施,加速地下水的排出和路基的固结。此外,还需加强 路基的边坡防护和排水设施的设置, 防止边坡滑塌和水 土流失的发生。

结束语

综上所述, 道路路基排水设计及创新应用是确保道路安全稳定的关键。通过深入理解排水基础理论, 科学规划排水设施, 结合创新材料与技术, 有效应对各类水害挑战。未来, 随着科技不断进步和工程实践深入, 路基排水设计将更趋智能化、环保化。我们期待持续探索与创新, 为构建更加安全、高效、可持续的道路交通体系贡献力量。

参考文献

[1]黄聪.市政工程中路基路面排水措施设计与探究[J]. 低碳世界,2019,(27):226-227.

[2]陈开,张青.市政道路工程中路基排水施工技术[J]. 建材与装饰,2019(14):248-249.

[3]戴峰.公路路基设计中的常见问题及解决对策[J].交通世界,2019,(09):70-71.

[4]柳一帆.公路路基路面排水设计研究[J].工程建设与设计,2020,(10):107-108.