水文地质工程对地质环境的影响

桂云飞 王鹏飞

河北省地球物理勘查院(河北省浅层地热能研究中心) 河北 廊坊 065000

摘 要:水文地质工程作为人类开发利用地下水资源的重要手段,其活动对地质环境产生深远影响。不合理的水文地质工程可能导致地下水位下降、地面沉降、水质恶化等地质环境问题,进而影响生态平衡与人类生存。深入研究水文地质工程对地质环境的影响机制,科学规划与管理工程活动,采取有效措施减少负面影响,对于保障地质环境安全、实现可持续发展具有重要意义。

关键词:水文地质工程;地质环境;影响

引言:水文地质工程作为人类探索与利用地下水资源的重要途径,其活动深刻影响着地质环境的稳定与演变。地下水作为地质环境的关键组成部分,其赋存状态、流动规律及水质变化直接关系到土壤稳定性、生态系统平衡及人类生存安全。因此深入探讨水文地质工程对地质环境的影响,不仅关乎自然资源的可持续利用,更与人类的福祉和社会的长远发展息息相关。

1 水文地质环境研究的重要性

水文地质环境研究的重要性不言而喻, 它不仅是地 质科学领域中的核心分支之一, 更是人类社会经济可持 续发展不可或缺的基础性研究。在当今全球气候变化、 水资源短缺、环境污染及地质灾害频发的大背景下,深 入理解水文地质环境的特性与变化规律,对于保障水资 源安全、预防地质灾害、促进生态环境保护及指导工程 规划建设等方面具有至关重要的意义。第一, 水资源管 理与保护。水文地质环境研究直接关系到地下水的赋存 条件、运移规律及水质状况,是水资源评价、规划与管 理的科学依据。通过揭示地下水系统的动态平衡机制, 可以科学制定水资源开发利用策略,有效防止过度开采 导致的地下水位下降、地面沉降等环境问题,确保水资 源的可持续利用。第二,地质灾害预防与治理。许多地 质灾害,如滑坡、泥石流、地面塌陷等,其发生发展与 水文地质条件密切相关。深入研究水文地质环境, 可以 识别地质灾害的潜在危险区,评估灾害发生的可能性与 风险等级,为防灾减灾工作提供科学决策支持,减少灾 害对人民生命财产安全的威胁。第三,生态环境保护与 修复。地下水是生态系统的重要组成部分,其水质状况 直接影响地表水体、湿地及土壤的健康。水文地质环境 研究有助于揭示人类活动对地下水环境的影响机制,为 制定合理的水环境保护措施和生态修复方案提供科学依 据,促进生态平衡与可持续发展[1]。第四,工程规划与建 设。在各类工程建设中,如水利水电、交通、建筑、矿业等,水文地质环境研究是项目选址、设计与施工的重要参考。准确掌握工程区域的水文地质条件,可以预见并避免由于地下水问题引发的工程事故,如基坑突水、隧道涌水等,确保工程安全、经济、高效地进行。第五,科学研究与技术创新。水文地质环境研究不仅服务于实际应用,还推动地质科学及相关学科的理论创新和技术进步。通过现代科技手段,如遥感技术、地理信息系统(GIS)、数值模拟等在水文地质领域的应用,不断深化对地下水系统复杂性的认识,为解决水资源、环境及地质灾害等问题提供新的思路和方法。

2 水文地质工程与地质环境的联系

水文地质工程与地质环境之间存在着紧密而深刻的 联系,这种联系体现在多个方面,共同构成了地球表面 及地下空间复杂而动态的自然系统。水文地质工程直 接作用于并受地质环境的影响, 地质环境, 包括岩层的 分布、构造特征、地貌形态以及地下水的赋存条件等, 是水文地质工程设计与实施的基础。工程师在进行水文 地质工程,如地下水资源的勘探、开采、保护,以及地 下水污染的控制与治理时,必须充分考虑地质环境的特 性, 如岩层的渗透性、地下水的流向与流速、含水层的 厚度与分布等,以确保工程的科学性与可行性。水文地 质工程活动也会对地质环境产生显著影响,例如,不合 理的地下水开采可能导致地下水位下降, 进而引发地面 沉降、地裂缝等地质灾害; 地下水污染则可能通过含水 层扩散,对周边生态环境造成长期危害。水文地质工程 在规划与实施过程中,必须采取科学合理的措施,以最 小化对地质环境的负面影响, 并努力实现工程效益与环 境保护的双赢。水文地质工程与地质环境之间的相互作 用还体现在对自然灾害的防控上,许多自然灾害,如洪 水、干旱、滑坡、泥石流等,都与水文地质条件密切相 关。通过深入研究水文地质工程,可以揭示这些灾害的 发生机理,为制定有效的防灾减灾措施提供科学依据。 例如,通过建设地下水监测网络,可以实时监测地下水 位变化,为洪水预警和干旱应对提供数据支持;通过地 下水工程措施,如修建防渗墙、排水沟等,可以降低滑 坡、泥石流等地质灾害的风险。

3 水文地质工程对地质环境的影响

3.1 地下水位变化对地质环境的影响

水文地质工程对地质环境的影响是多方面的, 其中 地下水位的变化尤为显著,它直接作用于地质环境,引 发一系列连锁反应。当地下水位发生显著变化时,首先 直接影响的是土壤和岩层的稳定性,地下水位上升,可 能导致土壤饱和度增加,降低土壤的承载力,增加地基 沉降的风险,特别是在软土地区,还可能引发地面隆起 或沼泽化现象。相反, 地下水位下降则可能使土壤失水 收缩,产生裂缝,影响地基的稳定性,长期而言还可能 导致地面沉降,对建筑物、道路等基础设施造成损害。 地下水位的变化还会对地下水系统本身造成影响, 地下 水位下降可能导致含水层疏干,减少地下水资源储量, 影响地下水资源的可持续利用, 地下水位的波动还可能 改变地下水的流动方向和速度,影响地下水的化学组分 和物理性质, 进而对地下水水质产生不利影响。在更广 泛的层面上, 地下水位的变化还可能对生态环境产生深 远影响。地下水位是维持湿地、河流、湖泊等自然水体 水位的重要因素之一, 其变化直接影响这些水体的水量 和水质,进而影响整个生态系统的平衡[2]。

3.2 地下水开采对地质环境的影响

水文地质工程对地质环境的影响显著, 其中地下水 开采是一个重要的方面,它直接作用于地下水系统,进 而对地质环境产生深远影响。地下水开采是满足人类生 产生活用水需求的重要手段,然而不合理的开采活动往 往会对地质环境造成不可逆的损害,过度开采地下水会 导致地下水位的急剧下降,形成地下水漏斗区。这种水 位下降会改变原有的水文地质条件, 使土壤和岩层失去 水分支撑, 进而引发地面沉降。地面沉降不仅会对建筑 物、道路等基础设施造成损害,还可能影响地下管线的 安全运行,增加维护成本。地下水开采还会影响地下水 系统的动态平衡, 地下水是一个复杂的自然系统, 其补 给、径流、排泄等过程相互关联、相互影响。过度开采 会打破这种平衡, 使地下水流动减缓, 甚至停滞, 导致 水质恶化。地下水位的下降还可能使地下水与地表水之 间的水力联系发生变化,影响地表水体的水量和水质。 地下水开采还可能引发其他地质灾害。例如,在岩溶地 区,地下水位的急剧下降可能导致岩溶洞穴的塌陷,形成岩溶塌陷地质灾害;在沿海地区,地下水位的下降还可能引发海水入侵,使地下水咸化,影响当地居民的饮水安全。

4 地质环境影响的应对方法和措施

4.1 精心策划与深入调研,奠定坚实基础

在面对水文地质工程对地质环境可能产生的复杂影 响时,精心策划与深入调研是首要且至关重要的步骤。 这一环节不仅为后续的工程设计与实施奠定了坚实的 基础,也是确保工程活动与环境和谐共生的前提。精心 策划要求项目团队在启动之初就进行全面的项目规划, 明确工程目标、任务分工、时间节点及预期成果。在策 划过程中, 应充分考虑地质环境的特殊性, 包括地形地 貌、地层岩性、水文地质条件等因素,确保工程方案的 科学性、合理性和可行性,还需制定详细的风险评估与 应对措施,以应对可能出现的各类地质环境问题。深入 调研则是通过现场勘查、资料收集、数据分析等手段, 全面了解工程区域的地质环境现状。调研内容应涵盖地 下水的赋存条件、流动规律、水质状况, 以及可能存在 的地质灾害隐患等。通过调研,可以准确掌握地质环境 的"家底",为工程设计与实施提供详实的数据支持。 调研过程中还应注重与当地居民的沟通与交流, 了解他 们对工程活动的意见与建议,确保工程方案能够兼顾社 会、经济与环境的多方面需求。为了有效应对地质环境 的影响,还需在策划与调研阶段加强跨学科合作。地质 学、水文学、环境科学、工程学等多学科的专家应共同 参与,形成合力,为工程活动的顺利开展提供全方位的 技术支撑。

4.2 强化工程监督与管理,确保安全实施

在水文地质工程实施过程中,强化工程监督与管理是确保工程安全、高效推进的关键。建立健全监督管理制度是首要任务,应明确监督管理的主体、职责、权限及工作流程,确保监督管理工作有章可循、有据可查,还需制定严格的工程质量标准和安全操作规程,为工程活动的规范化、标准化提供制度保障。加强现场监督与检查是确保工程质量的重要手段,应派遣专业的监督人员常驻现场,对工程施工进度、质量、安全等方面进行全方位、全过程的监督与检查^[3]。对于发现的问题,应及时下达整改通知,并跟踪整改落实情况,确保问题得到彻底解决。完善应急响应机制也是必不可少的,应针对可能发生的各类地质灾害和突发事件,制定详细的应急预案和响应流程,还需定期组织应急演练,提高应急响应能力和水平,确保在紧急情况下能够迅速、有效地采

取应对措施,降低灾害损失。

4.3 创新科技引领,推动生态环境保护建设

在水文地质工程领域, 创新科技的应用是推动生态 环境保护建设的重要动力。通过引入先进的科技手段和 方法,可以更加精准地预测和评估工程活动对地质环 境的影响, 从而制定更加科学合理的应对措施。应加大 对水文地质工程领域科技研发的投入力度, 鼓励和支持 科研机构、高校和企业开展联合攻关,突破关键技术瓶 颈。同时还应积极引进和消化吸收国际先进技术和经 验,提升我国在水文地质工程领域的科技水平。推广应 用新技术、新材料和新工艺是推动生态环境保护建设的 重要途径。例如,可以利用遥感技术、地理信息系统 (GIS)、数值模拟等现代科技手段,对地下水系统进行 高精度、高效率的监测和模拟;可以采用生态友好型材 料和技术手段,减少工程活动对地质环境的破坏;还可 以探索和推广地下水回灌、雨水收集利用等节水减排技 术,提高水资源的利用效率。应通过多种渠道和方式向 公众普及水文地质知识和生态环境保护理念,提高公众 对地质环境保护的认识和参与度,还应加强对工程人员 的培训和教育,提高他们的专业素养和环保意识,确保 工程活动能够遵循生态优先、绿色发展的原则。

4.4 兼顾生态发展与环境保护,实现可持续发展

在水文地质工程领域实现可持续发展,必须兼顾生态发展与环境保护的双重目标。树立绿色发展理念是实现可持续发展的前提,应深刻认识到地质环境是经济社会发展的重要基础资源之一,必须像保护眼睛一样保护地质环境。在工程活动中应始终坚持生态优先、绿色发展的原则,将环境保护贯穿于工程规划、设计、施工和运营的全过程^[4]。推动生态修复与治理是缓解地质环境压力的重要手段,对于因工程活动而受损的地质环境,应积极开展生态修复与治理工作。通过植被恢复、土壤改良、水体净化等措施,恢复受损生态系统的结构和功能;通过建设生态防护工程、实施水土保持措施等手段,减少工程活动对地质环境的破坏和干扰。促进资源节约与循环利用也是实现可持续发展的重要途径,应在

水文地质工程领域积极推广节水减排、资源循环利用等绿色生产方式和技术手段。通过优化工程设计、改进施工工艺、提高资源利用效率等措施,降低工程活动对自然资源的消耗和浪费;通过加强废弃物管理和资源化利用工作,减少废弃物对地质环境的污染和破坏。

4.5 关注地下水状况, 守护地质环境安全

关注地下水状况,是守护地质环境安全不可或缺的一环。地下水作为地球生态系统的重要组成部分,其质量与稳定性直接关系到人类生存与发展的基础。随着工业化、城市化进程的加快,地下水污染与过度开采问题日益严峻,对地质环境构成了潜在威胁。必须高度重视地下水状况,加强监测与评估,及时发现并解决存在的问题。通过科学规划和管理,合理开发利用地下水资源,避免过度开采导致的地面沉降、水质恶化等环境问题。同时加大地下水污染防治力度,严格控制污染源,保护地下水不受污染,确保水质安全。只有全社会共同努力,关注地下水状况,才能有效守护地质环境安全,为子孙后代留下一个美丽、宜居的地球家园。

结束语

水文地质工程在促进经济社会发展的同时,也对地质环境带来了不容忽视的挑战。面对这些挑战,需秉持绿色发展理念,加强科学研究与技术应用,优化工程设计与实施方案,确保水文地质工程活动既能满足人类需求,又能有效守护地质环境安全。只有这样,才能在保障当前发展的同时,为后代子孙留下一个更加美好的地球家园。

参考文献

[1]高瑞.水文地质工程对地质环境的影响[J].中国金属通报, 2023, (10): 56-58.

[2]刘文开.水文地质工程对地质环境的影响研究[J].中国金属通报,2023,(04):162-164.

[3]谢建宝. 水文地质工程中地质环境的影响分析[J]. 内蒙古煤炭经济, 2021, (20): 193-195.

[4]姚磊博. 水文地质工程中地质环境的影响[J]. 世界有色金属, 2018, (08): 222-223.