油气田行业节能减排途径解析

尚春阳 河南油田工程科技股份有限公司 河南 郑州 450000

摘 要:随着全球能源需求的不断增长和环境保护意识的日益增强,油气田行业作为能源供应的重要领域,其节能减排工作显得尤为迫切。本文旨在分析油气田行业节能减排的现状与挑战,探索实践中的有效途径,以期在保障国家能源安全的同时,推动行业向低碳、绿色、可持续的方向发展。通过深入剖析节能减排的各个方面,为油气田行业提供可行的解决方案和参考建议,助力行业实现绿色转型和高质量发展。

关键词:油气田;节能减排;途径

引言:油气田行业作为国家经济的重要支柱之一,承担着巨大的能源供应责任。节能减排是油气田行业实现可持续发展的必然选择,也是提高经济效益、降低生产成本、减少环境污染的重要途径。本文深入探讨了油气田行业节能减排的重要意义和现状,针对行业面临的环境挑战与市场压力,提出了清洁生产工艺、设备改造、废物回收利用、余热回收及能源管理等节能减排途径,为油气田行业可持续发展提供有力支撑。

1 油气田行业节能减排的意义

油气田行业节能减排的意义深远, 尤其在"双碳" 目标(即碳达峰、碳中和)的驱动下,其重要性更加凸 显。作为能源领域的核心,油气田不仅承载着国家能 源安全的重任, 也直接影响着环境保护与气候变化的应 对。节能减排不仅是提升企业经济效益的有效手段,更 是响应国家可持续发展战略、助力生态文明建设的必然 选择。采用高效节能的开采技术和智能化管理系统,减 少能源消耗与损耗,提高资源回收率,直接增加企业的 净利润空间。双碳目标的推进促使企业加速技术革新, 如开发应用碳捕捉、利用与封存技术, 既减少了碳排 放,又可能开辟新的收入来源。社会责任方面,油气田 行业的节能减排对于减轻环境压力、保护生态至关重 要。减少温室气体排放,有助于缓解全球变暖趋势,保 护自然生态系统免受破坏。通过实施绿色开采、生态修 复等措施,企业能够树立良好的社会形象,展现其对环 境保护的承诺与行动[1]。面向未来,油气田行业的可持续 发展必须建立在低碳、绿色的基础之上。节能减排是实 现这一目标的关键路径,它促使行业加速向清洁能源转 型,探索如氢能、生物质能等新能源的开发利用,减少 对化石燃料的依赖。通过构建绿色低碳循环发展体系, 油气田企业能够增强长期竞争力, 为国家的能源结构优 化和生态文明建设贡献力量。

2 油气田行业节能减排现状

2.1 行业现状的剖析

油气田行业的快速发展,首先得益于我国丰富的油气资源储备,油田资源的有效开发为国家提供了稳定的能源供应。随着三维地震勘探、水平井钻探、水力压裂等先进技术的应用,油气勘探的精度和开采效率得到了显著提升。这不仅降低了开采成本,还大大提高了油气资源的回收率,为国家的能源战略安全提供了有力支撑。然而,油气开采活动对自然环境的影响也不容忽视。大规模的土地使用导致地表植被破坏,生态系统平衡受到威胁。钻井作业过程中产生的废水、废气和废渣,若未经妥善处理,将直接污染周边的水源、土壤和空气。特别是在一些生态敏感区域,如湿地、草原等,油气开采活动可能引发更为严重的生态问题,对当地生物多样性造成破坏,甚至影响到周边居民的生活质量和健康安全。

2.2 能源消耗与环境影响的双重挑战

油气田行业的高耗能特性是其主要的环境挑战之一,从勘探到开采,再到运输和加工,整个过程都需要消耗大量的化石能源。这不仅增加了运营成本,还加剧了全球气候变暖的趋势。特别是在开采过程中,甲烷等温室气体的排放成为了一个不容忽视的问题。甲烷的温室效应远超二氧化碳,对全球气候变化构成了额外威胁。如何在保障能源供应的同时,有效降低行业自身的碳足迹,成为了油气田行业亟待解决的难题。此外,随着全球能源结构的转型和可再生能源的快速发展,油气田行业也面临着来自市场需求的挑战。如何在新能源崛起的背景下,保持行业的竞争力,实现传统能源与新能源的融合发展,是行业必须思考的问题。

2.3 绿色转型的紧迫性与机遇

面对严峻的环境挑战和市场压力,油气田行业必须

加快绿色转型的步伐,探索低碳、环保的发展路径,这 是对行业自身可持续发展的内在要求。(1)提高油气开 采效率是降低能耗和减少排放的关键。通过优化开采工 艺、提高资源回收率,可以在保障能源供应的同时,有 效降低对环境的破坏。其次,推广清洁能源的使用也是 绿色转型的重要方向。在油气田的生产过程中, 可以积 极引入太阳能、风能等可再生能源, 替代传统的化石能 源,减少碳排放。(2)实施废弃物资源化利用和加强环 境污染治理与生态修复技术。通过回收利用废水、废气 和废渣中的有用物质,不仅可以减少污染物的排放,还 可以实现资源的循环利用。加强生态环境的监测和修复 工作,恢复被破坏的生态系统,保护生物多样性,也是 行业必须承担的社会责任。(3)在绿色转型的过程中, 油气田行业还面临着诸多机遇。例如, 通过技术创新和 产业升级,可以开发出更加环保、高效的油气开采技 术,提升行业的竞争力。与新能源产业的融合发展也可 以为行业带来新的增长点[2]。

3 油气田行业节能减排途径

3.1 清洁生产工艺

3.1.1 钻井清洁生产技术

(1) 低毒无害钻井液的应用:钻井液是钻井过程中 不可或缺的工作介质,但其成分往往含有对环境和人体 有害的化学物质。因此, 开发和应用低毒、无毒的钻井 液成为减少环境污染的重要途径。通过研发新型化学添 加剂, 如用无铬木质素类稀释剂替代传统的铬木质素类 稀释剂,使用胺类杀菌剂代替酚类和甲醛类杀菌剂,以 及采用矿物油和豆类油作为润滑剂替代柴油,可以显著 降低钻井液中的有毒物质含量。此外, 用可生物降解和 环境毒性小的溶剂替代三氯苯和四氯化碳等传统有机溶 剂,也能有效减少对环境的影响。(2)欠平衡钻井技术 的推广: 欠平衡钻井技术是一种先进的钻井方法, 通过 降低钻井液密度或采用低密度钻井液, 使井底压力低于 地层孔隙压力,从而避免钻井液侵入地层或漏失。这种 技术不仅提高了钻井效率,还减少了钻井液对地层的污 染。随着油田勘探开发领域的不断扩大和难度的增加, 欠平衡钻井技术和装备的应用范围也在不断扩大,成为 实现清洁生产的重要手段。(3)钻井液固相控制方法 及检测装置的组合应用:通过合理地利用振动筛、除砂 机、除泥器、旋流分离器等固相检测装置,能够合理降 低钻井液中的固相法浓度, 进而有效减少了钻井液的稀 释程度和化学处理剂的用量。引入钻井液监测系统实时 监测钻井液的性质,可以及时调整处理方案,减少水耗 和添加剂的用量,进一步减少废钻井液的产生。

3.1.2 井下清洁生产技术

(1)延长作业周期与降低作业频次:通过定时、定量加入防垢剂、防蜡剂、防腐剂等化学药剂,可以有效防止油井结蜡、结垢和腐蚀,从而延长油井寿命,减少修井次数。这不仅降低了作业成本,还减少了因修井作业产生的环境污染。(2)高效自动关井装置的安装:在井口安装高效自动关井装置,可以在油井出现异常现象时自动关闭油气井,防止污染物的泄漏和扩散。这种装置的应用不仅提高了油井的安全性,还减少了环境污染的风险。

3.1.3 采油(气)、油气集输清洁生产技术

(1)太阳能加热原油技术的应用:利用太阳能给油罐加温是一种新型的节能技术。通过集热器以闭路循环的形式使加热系统盘管内载热介质循环流动,通过热交换系统给储罐中的原油持久加温,从而替代传统的电能加热方式,大大降低能耗。(2)CO2驱油技术的推广:CO2驱油技术是一种将超临界状态的CO2注入已开采过的储油层中,利用CO2的高压推动原油向生产井流动的技术。这种技术不仅可以提高石油的采出率,还可以减少CO2的排放,实现资源的高效利用和环境的双重保护。(3)控水稳油新技术的实践:通过采用堵水调剖、分层开采、同步注水等采油工艺,以及安装井下油水分离装置等技术手段,可以有效控制水锥的形成和扩展,防止水淹油井。实现井下油水预分离,将分离出的水在同一井中注入到合适的处理层段,进一步降低废水水量和处理成本。

3.2 设备改造

在能源行业,设备改造是提升能效、降低能耗并推 动绿色转型的关键环节。特别是在石油开采领域,旧老 钻机设备和技术因其高耗能、污染重而逐渐成为行业发 展的瓶颈。为此,逐步淘汰这些落后设备,引进高效节 能的新型设备,成为行业发展的必然选择。(1)新型高 效注水泵、输油泵和加热炉等设备的引入。这些设备不 仅在设计上更加优化,减少了能源浪费,还通过先进的 技术手段提高了注水、输油和加热的效率。例如,新型 注水泵采用先进的流体动力学设计,能够更精确地控制 注水量和注水压力,从而降低能耗;输油泵则通过优化 泵体和叶轮结构,提高了输送效率,减少了能源损失; 而高效加热炉则利用先进的燃烧技术,提高了燃料的利 用率,降低了排放。(2)智能化控制系统的应用。通过 引入物联网、大数据、人工智能等技术手段,智能化控 制系统能够实时监测设备的运行状态和生产数据,并根 据这些数据智能调整设备的运行参数,实现设备的优化 运行和能源的高效利用^[3]。智能采油技术就是这一应用的典型代表,它通过实时监测油井的生产情况和环境参数,智能调整采油参数和设备运行状态,从而显著提高采油效率和节能效果,为石油行业的绿色发展提供了有力支撑。

3.3 循环经济与"无废"建设

(1)循环经济作为一种以"减量化、再利用、再循 环"为原则的发展模式,对于油气田行业的节能减排具 有深远意义。其核心在于通过提高资源利用效率,减少 资源消耗和废物排放,实现经济社会可持续发展。在油 气田行业,循环经济的应用体现在生产流程的优化上。 通过改进生产工艺,提高能源使用效率,减少废弃物的 产生。例如,采用先进的油气开采技术,如水平井钻 探、水力压裂等,可以显著提高油气资源的采收率,同 时减少开采过程中对环境的破坏。此外,对于生产过程 中产生的废水、废气和固体废物,通过循环利用和无害 化处理,可以最大限度地减少其对环境的影响。(2) "无废"建设则是循环经济在油气田行业中的另一重要 实践。它要求在生产过程中实现固体废物的零排放或最 小化排放, 并通过资源化利用将废物转化为有价值的资 源。在油气田行业,这包括了对钻井泥浆、岩屑、废油 等废物的有效处理与利用。例如,通过先进的处理技 术,将钻井泥浆转化为建筑材料或土壤改良剂;对废油 进行回收再利用,减少对新油的需求;对岩屑进行分类 处理, 提取其中的有用成分, 如金属、矿物等。为了推 进循环经济与"无废"建设,油气田企业需要加强技术 研发和创新。这包括开发更加环保、高效的开采技术, 研究废物资源化利用的新方法,以及建立完善的废物管 理体系。

3.4 数字化绿色化协同途径

数字化绿色化协同是充分利用数字化技术,如大数据、云计算、人工智能等,提高生产效率和能源使用效率,同时减少对环境的影响。在油气田行业,数字化绿色化协同的应用体现在多个方面。(1)通过数字化技术,企业可以实现对生产过程的实时监控和智能调控,提高油气开采的精准度和效率。例如,利用大数据分析技术,对地质数据进行深度挖掘和分析,优化钻井路径

和开采方案;通过人工智能算法,对生产过程中的能耗 进行实时监测和调控,降低能源消耗和排放。(2)数字 化绿色化协同还可以推动绿电、风能、空气能等清洁能 源在油气田行业的应用。通过建设太阳能发电站、风力 发电站等设施, 为油气田提供清洁能源, 减少对传统化 石能源的依赖。利用空气能热泵等技术, 为油气田提供 高效的供暖和制冷服务,降低能源消耗和排放。(3)碳 捕集利用与封存(CCUS)技术则是油气田行业应对气候 变化、实现碳中和目标的关键技术之一。它通过将二氧 化碳从工业排放源中捕集出来,经过压缩、运输后,注 入到地下深层地质构造中永久封存,或者将捕集的二氧 化碳转化为有价值的化学品或燃料, 从而实现二氧化碳 的减排和资源化利用。在油气田行业, CCUS技术的应用 具有广阔的前景。一方面,油气田本身具有大量的二氧 化碳排放源,如天然气开采过程中的伴生气体、炼油过 程中的废气等,这些排放源为CCUS技术的应用提供了丰 富的原料。另一方面,油气田的地质条件通常适合二氧 化碳的封存,如枯竭油气田、深层盐水层等,为CCUS技 术的实施提供了良好的地质条件。

结语

综上所述,油气田行业的节能减排工作是一项系统 工程,需要政府、企业和员工共同努力。通过实施清洁 生产工艺、设备改造、废物回收利用、余热回收及能源 管理等措施,可以显著降低能耗和排放,提高资源利用 效率。未来,油气田行业应继续加强技术创新和产业升 级,积极探索更加高效、环保的发展路径,为实现行业 的可持续发展做出更大贡献。同时,也期待社会各界给 予更多关注和支持,共同推动油气田行业绿色转型和高 质量发展。

参考文献

- [1]宋曙光,张翀焱.油田新能源与节能减排技术研究 [J].石油石化节能,2023,13(9):83-88.
- [2] 郇承武.浅析油气田集输系统节能降耗的技术研究 [J].中国石油和化工标准与质量,2023,43(12):24-26.
- [3]余虹钢,曾桃,夏堃,等.石油化工企业节能减排现状与对策研究[J].现代工业经济和信息化,2023,13(9):206-208.