变电站电气一次设备常见问题

张兵

国能亿利能源有限责任公司电厂 内蒙古 鄂尔多斯 014300

摘 要:变电站电气一次设备是电力系统中至关重要的组成部分,负责电能的传输、分配和保护。然而,在实际运行中设备常面临多种故障,这些故障不仅影响电力系统的稳定性和可靠性,还可能对设备和人员安全构成威胁。本文深入分析了变电站电气一次设备常见的故障类型及其原因,并提出了相应的解决策略,以有效预防设备故障,提高设备的可靠性和稳定性,为电力系统的安全运行提供有力保障。

关键词: 变电站; 电气一次设备; 常见问题

引言

随着电力行业的快速发展和电力需求的不断增长,变电站电气一次设备的安全稳定运行变得尤为重要。然而,由于设备长期运行、工作环境复杂以及制造、安装和维护等方面的不足,变电站电气一次设备常出现各种故障。这些故障不仅会导致电力系统中断,影响供电质量,还可能引发安全事故,对人员和设备造成损害。因此,深入分析变电站电气一次设备的常见故障及其原因,制定相应的解决策略,对于提高电力系统的稳定性和可靠性具有重要意义。

1 变电站一次设备相关概念

变电站一次设备是指那些直接用于生产、输送和分 配电能过程中的电气设备,这些设备在电力系统中扮演 着举足轻重的角色,它们构成了电力系统的主骨架,负 责将发电厂产生的电能高效地输送到各个用电点。一次 设备主要包括发电机、变压器、输电线路、电力电缆、 断路器、隔离开关、母线、电抗器、并联补偿电容器以 及电流互感器和电压互感器等。(1)发电机作为电力系 统的起点,是将其他形式的能源(如水能、风能、热能 等)转化为电能的机械设备。它通过内部的电磁感应原 理,将机械能转换为电能,为整个电力系统提供源源不 断的动力。(2)变压器则是电力系统中不可或缺的变换 设备,它利用电磁感应原理,将电能从一次侧传输到二 次侧,并在这个过程中实现电压的升高或降低[1]。变压器 在电力传输和分配中起着至关重要的作用,它能够有效 地减少电能传输过程中的损耗,提高电力传输的效率。 (3)输电线路和电力电缆则是电能传输的通道,它们将 发电机产生的电能输送到各个变电站, 再经过变电站的 分配,将电能输送到各个用电点。输电线路通常采用架 空线或电缆的形式, 具有传输距离远、传输容量大等优 点。(4)断路器、隔离开关等开关设备则负责电力系 统的控制和保护,断路器具有完善的灭弧装置和高速传动机构,能够接通和断开各种情况下的高压电路中的电流,实现电力系统的正常运行和故障切除。隔离开关则主要用于隔离电源、进行倒闸操作以及分合小电流等。(5)母线是变电站中的核心部件之一,它负责将各个电气间隔连接起来,实现电能的汇集、分配和传送。母线通常具有高导电性、高强度和高稳定性等特点,能够确保电力传输的可靠性和安全性。(6)电抗器和并联补偿电容器则用于改善电力系统的功率因数,提高电力系统的稳定性和经济性。它们通过补偿电力系统中的无功功率,减少电能传输过程中的损耗,提高电力传输的效率。

2 变电站电气一次设备常见问题分析

2.1 一次设备的制造质量

一次设备的制造质量是影响其运行稳定性的关键因 素,直接关系到电力系统的安全性和可靠性。首先,材 料的选择和质量是影响设备制造质量的基础, 如果制造 商在选材时把关不严,使用了质量不合格的材料,那么 设备的性能和可靠性就会大打折扣。例如, 绝缘材料的 质量直接关系到设备的绝缘性能。如果绝缘材料存在缺 陷,如耐电压能力不足、耐老化性能差等,那么在长期 运行过程中,设备就容易出现绝缘击穿、漏电等故障, 严重时甚至可能引发火灾等安全事故。其次,加工精度 和工艺水平也是影响设备制造质量的重要因素, 在设备 制造过程中, 如果加工精度不够高, 或者工艺水平不过 关,那么设备的零部件就可能存在尺寸偏差、配合不良 等问题。这些问题不仅会影响设备的正常运行,还可能 加速设备的磨损和老化,缩短设备的使用寿命。此外, 在组装过程中,如果制造商未能严格按照设计图纸和工 艺要求进行组装,或者组装过程中存在疏忽和错误,那 么设备就可能存在组装缺陷。这些缺陷可能导致设备在 运行过程中出现松动、脱落等问题,严重时甚至可能引

发设备损坏或安全事故。最后,除了制造质量外,设备的安装质量也对其运行稳定性产生重要影响^[2]。在设备安装过程中,如果安装技术不过关或安装环境恶劣,那么设备就可能存在安装隐患。例如,如果安装人员未能正确安装和调试设备,或者设备在安装过程中受到损坏或污染,那么设备的性能和可靠性就会受到影响。并且,如果设备的安装环境不符合要求,如温度、湿度等环境因素超出设备的工作范围,那么设备也可能出现运行不稳定或故障等问题。

2.2 受到各种因素影响

从设备的运行和维护角度来看,一次设备在运行过 程中会受到多种复杂因素的影响,这些因素都可能成为 设备出现故障的潜在原因。过载、短路、过电压等是 设备运行中最常见的故障类型,它们对设备的稳定运行 构成了严重威胁。一方面,过载故障是设备运行中的常 见问题之一, 当设备所承受的电流超过其额定负载能力 时,会导致设备内部产生过多的热量,从而引发设备过 热和损坏。过载故障不仅会影响设备的正常运行,还可 能对电网的稳定性造成冲击。如果过载现象持续存在, 设备内部的绝缘材料可能会因高温而老化,甚至引发火 灾等严重后果。另一方面, 短路故障是另一种常见的设 备运行故障, 当设备内部或外部发生短路时, 会导致电 流急剧增大,产生大量的热量和电弧,从而对设备内部 部件造成严重的损坏。短路故障还可能引发火灾、爆炸 等安全事故,对设备和人员的安全构成严重威胁。此 外,过电压故障也是设备运行中的一大问题,过电压是 指设备所承受的电压超过其额定电压值,这可能是由于 雷电、操作过电压或系统内部过电压等原因引起的。过 电压故障会破坏设备的绝缘结构,导致设备失效或损 坏。因此,在运行过程中,必须加强对设备的过电压保 护,确保设备在过电压条件下能够安全运行。

3 变电站电气一次设备常见问题的解决

3.1 加强设备制造过程的监管和控制

针对设备制造和安装质量导致的故障,必须从源头抓起,全面加强设备制造过程的监管和控制,以确保设备在投入运行前具备高度的可靠性和稳定性。第一,在选择制造商时,应严格审查其生产资质,确保其具备生产所需的各种许可证和认证。同时,制造商的技术能力也是评估其产品质量的关键因素。这包括制造商在材料选择、加工工艺、质量控制等方面的专业能力和经验。只有具备强大技术能力的制造商,才能生产出符合行业标准和规范的高质量设备。第二,在设备制造过程中,严格遵循行业标准和规范至关重要,这些标准和规范为

设备制造提供了明确的技术指导和要求,确保设备在性 能、安全、可靠性等方面达到一定的水平。制造商应建 立完善的生产管理体系,确保从原材料采购到成品出厂 的每一个环节都符合相关标准和规范[3]。此外,制造商还 应加强对生产过程的监控和检测,及时发现并纠正生产 中的偏差和问题,确保设备的质量稳定可靠。第三,在 设备安装过程中,派遣经验丰富的技术人员进行指导和 监督同样重要,这些技术人员应具备丰富的设备安装经验 和专业知识,能够准确判断设备的安装位置和方式,确保 设备的正确安装和调试。同时,他们还应具备解决现场问 题的能力, 能够应对设备安装过程中可能出现的各种突发 情况。通过技术人员的指导和监督,可以确保设备安装 过程的安全性和可靠性, 为设备的稳定运行奠定基础。 第四,验收测试应涵盖设备的各项性能指标,包括电气 性能、机械性能、热性能等。通过测试, 可以全面评估 设备的性能和质量,确保设备符合设计要求。并且,验 收测试还可以发现设备在制造和安装过程中可能存在的 问题和隐患,为后续的维护和保养提供重要参考。

3.2 建立完善的设备管理体系

制定详尽且切实可行的设备运行和维护计划是管理 体系的基石,这一计划应基于设备的类型、用途、运行 环境及历史故障数据等因素,科学设定设备的日常维 护、定期检查、大修及更换零部件等任务的时间间隔与 具体内容。同时, 计划中应明确各项工作的责任主体, 确保每项任务都有专人负责,避免责任不清导致的维护 疏漏。其中,人员培训与教育是提高设备运行维护水平 的关键一环,操作人员的技术水平和责任心直接影响到 设备的运行效率与安全性。因此,应定期组织操作人员 进行专业技能培训,包括设备操作规范、故障排查方 法、应急处置流程等,不断提升他们的业务能力和安全 意识。并且,通过分享优秀案例、开展经验交流会等形 式,激发操作人员的学习热情,形成积极向上的工作氛 围。另外,设备故障监测与预警系统的建立,是预防设 备故障、减少停机时间的有效手段。借助先进的传感器 技术和数据分析算法,可以实时监测设备的振动、温 度、电流等关键参数,及时发现设备异常状态。通过大 数据分析,系统能够预测设备故障的发展趋势,提前发 出预警信号,为维修人员争取宝贵的维修准备时间。最 后,在设备管理体系中,还应强调持续改进与反馈机 制。每一次设备故障处理完毕后,都应组织相关人员进 行分析总结,查找故障原因,评估维修效果,提出改进 措施。这些经验教训应被纳入设备管理体系中, 作为未 来设备维护的参考。

3.3 渗漏油故障和温度异常故障修复

针对变压器常见的渗漏油故障,首先应从源头上加 强油箱和零部件的密封性检查与维护, 变压器油箱及其 零部件的密封性能是防止渗漏油的关键。在制造和安装 阶段,应确保所有密封件的质量符合相关标准和要求, 避免因密封件老化、损坏或安装不当而导致的渗漏。同 时,定期对变压器进行油位检测和渗漏油检查,是及时 发现并处理渗漏点的有效手段[4]。检查过程中,应仔细观 察油箱、油枕、套管、阀门等部件是否有渗漏迹象,一 旦发现渗漏点,应立即采取措施进行修复,避免渗漏油 现象进一步恶化。而除了加强密封性检查与维护外,还 应关注变压器油的品质与状态。变压器油不仅起到绝缘 和冷却的作用,还能反映变压器的运行状态。定期对变 压器油进行取样分析,检测其含水量、酸值、击穿电压 等关键指标,可以及时发现油质的变化情况,为预防渗 漏油故障提供重要依据。此外,变压器的散热系统主要 由散热器、风扇、油泵等组成, 其性能直接影响到变压 器的散热效果。定期对散热器进行清洁和检查,确保散 热片无堵塞、无变形,风扇和油泵运转正常,是保持散 热系统高效运行的基础。并且,还应关注变压器室的通 风情况,确保变压器室有足够的通风量,避免因通风不 良而导致的温度升高。

3.4 异常跳闸故障和误动故障

断路器作为电力系统中至关重要的控制和保护设备,其稳定运行对于维护电网的安全性和可靠性至关重要。然而,在实际运行中,断路器常面临异常跳闸故障和误动故障两大挑战,这些故障不仅会影响电力系统的正常运行,还可能对设备和人员安全构成威胁。因此,采取有效措施解决这两类故障,对于保障断路器的稳定运行具有重要意义。一方面,针对断路器常见的异常跳闸故障,首先应加强对断路器保护装置的维护和校验,保护装置是断路器正确动作的关键,其准确性和可靠性直接关系到电力系统的安全运行。因此,应定期对保护装置进行检查、测试和维护,确保其各项功能正常,参数设置准确。在维护过程中,应重点关注保护装置的电

源、输入信号、输出回路等关键环节,确保各环节工作 正常,避免因保护装置故障而导致的异常跳闸。另一方 面,对于断路器误动故障,其发生原因往往与线路过电 压、负载端零线故障等因素有关。所以,加强对这些因 素的监测和控制是预防误动故障的关键,应加强对线路 过电压的监测,通过安装过电压保护装置或采取其他有 效的过电压抑制措施,降低线路过电压对断路器的影 响。同时,定期对线路进行巡视和检查,及时发现并处 理线路故障,避免因线路故障而导致的误动。除了以上 措施外,还应加强对断路器运行状态的实时监测和数据 分析。通过安装在线监测装置,可以实时监测断路器的 电流、电压、温度等关键参数,及时发现并处理异常情 况。并且,利用大数据分析技术,对断路器的运行数据 进行深入挖掘和分析,可以评估其运行状态和趋势,为 后续的维护和管理提供科学依据。

结语

综上所述,变电站电气一次设备的稳定运行是电力系统安全、可靠供电的基础。本文深入分析了变电站电气一次设备常见的故障类型及其原因,并提出了相应的解决策略。通过加强设备制造过程的监管和控制、建立完善的设备管理体系、渗漏油故障和温度异常故障修复等措施,可以有效预防设备故障,提高设备的可靠性和稳定性。未来,随着电力技术的不断进步和智能化水平的提升,变电站电气一次设备的故障检测和预防将变得更加精准和高效。

参考文献

[1]王波.浅析变电站一次设备运行中状态检修问题[J]. 中国设备工程,2021(7):64-65.

[2]宋硕阳.智能变电站一次设备智能化技术探究[J].轻松学电脑,2019,000(025):P.1-1.

[3]孔维君.变电站一次设备的智能化研究[J].轻松学电脑,2019,000(017):P.1-1.

[4]王英杰.智能变电站运行维护管理策略[J].黑龙江科学,2020,11(16):2.