钢结构施工中的焊接技术研究

刘平

陕西省建筑设备安装质量检测中心有限公司 陕西 西安 721000

摘要:随着建筑行业的快速发展,钢结构因其自重轻、抗震性好、施工周期短等优势,在高层建筑、大型场馆等领域得到广泛应用。钢结构施工中,焊接技术作为主要的连接方式,其质量直接影响到整个工程的安全性和稳定性。本文旨在探讨钢结构施工中的焊接技术,分析其特点、难点及质量控制措施,并提出相应的改进建议。

关键词: 钢结构; 焊接技术; 质量控制; 改进建议

引言

钢结构作为一种环保型绿色住宅建筑体系,具有轻质高强、抗震性好、基础造价低、施工周期短、质量易保证等优势,在国内外迅速发展。钢结构施工中,焊接技术作为连接钢构件的主要手段,其质量直接关系到工程的安全性和稳定性。因此,对钢结构施工中的焊接技术进行深入研究,对于提高工程质量、保障施工安全具有重要意义。

1 钢结构焊接技术的特点与难点

1.1 特点

钢结构焊接技术之所以能够在建筑领域得到广泛应 用,主要得益于其以下几个显著特点:首先,焊接技术 的适应性强。无论是大型桥梁、高层建筑还是工业厂 房,钢结构焊接技术都能满足其连接需求。焊接技术可 以灵活地应用于各种形状、尺寸和材质的钢材上,实现 构件之间的牢固连接。同时,随着焊接技术的不断发 展,新的焊接方法和设备不断涌现,进一步提高了焊接 技术的适应性和应用范围。其次,焊接连接强度高。相 比于螺栓连接等机械连接方式,焊接连接能够实现钢材 之间的冶金结合,形成整体的受力体系。这种连接方式 不仅提高了结构的承载能力,还增强了结构的刚度和稳 定性。在地震等自然灾害发生时,焊接连接能够更好地 抵抗外力的作用,保护建筑物的安全。在焊接方法上, 手工电弧焊、CO2气体保护焊、埋弧焊等多种焊接方法 在建筑钢结构中得到了广泛应用。手工电弧焊具有操作 灵活、设备简单等优点,适用于各种复杂形状的构件焊 接。CO。气体保护焊则具有焊接速度快、焊缝质量高等特 点,特别适用于薄板和大厚度板的焊接。埋弧焊则适用 于长直焊缝和大型构件的焊接,能够提高焊接效率和质 量。在实际施工中,可以根据具体的施工环境和要求选 择合适的焊接方法。

1.2 难点

1.2.1 焊接变形

焊接变形是钢结构焊接过程中一个难以避免的问题。由于焊接过程中局部区域受到高温作用,焊缝及其附近区域的金属发生热膨胀,而远离焊缝的区域则相对保持冷态。当焊接结束后,焊缝区金属冷却收缩,但由于受到周围冷态金属的约束,无法自由收缩,从而产生内应力。这些内应力在达到一定程度时,会导致构件发生变形,如弯曲、扭曲、翘曲等^[1]。焊接变形不仅影响构件的尺寸精度和装配质量,还可能对结构的整体性能和使用寿命产生不利影响。特别是在对尺寸精度要求较高的构件中,焊接变形往往成为制约焊接质量的关键因素。

1.2.2 焊接裂纹

高强度钢材的焊接过程中容易产生焊接裂纹,这是一个极为严重的问题。由于高强度钢材的热影响区晶粒长大倾向严重,焊接时高温作用使得晶粒进一步长大,形成粗大的晶粒组织。这种粗大的晶粒组织在冷却过程中容易产生热裂纹。同时,由于高强度钢材的淬硬倾向较大,焊接接头在冷却过程中容易产生马氏体等硬脆组织,从而增加冷裂纹的产生风险。焊接裂纹会严重降低构件的承载能力和使用寿命,甚至可能导致结构在受力过程中突然破坏,造成严重后果。

1.2.3 焊接质量控制难度

钢结构焊接涉及多种焊接方法和材料,焊接质量受多种因素影响,使得焊接质量控制变得极为困难。焊接参数(如焊接电流、电压、焊接速度等)的选择对焊接质量具有直接影响。然而,由于焊接过程的复杂性,很难准确确定最优的焊接参数。焊工的技能水平也是影响焊接质量的重要因素。焊工的操作经验、技术熟练程度以及质量意识都会对焊接质量产生影响。此外,环境条件(如温度、湿度等)以及焊接设备的状况也会对焊接质量产生影响。由于这些因素的复杂性和多变性,难以对焊接质量进行统一的控制。这使得在钢结构焊接过程中,很

难确保每一件焊接接头都能达到设计要求的质量标准。

2 钢结构焊接技术的质量控制措施

2.1 焊接前的准备

焊接前的准备工作是确保焊接质量的基础,主要包括焊接设备和材料的准备、焊接坡口的检查和清理以及 焊接工艺评定。

- (1)焊接设备和材料的准备:在焊接作业开始之前,必须对焊接设备进行全面的检查和维护,确保设备处于正常工作状态。这包括检查焊接电源的稳定性、焊机的接线是否牢固、焊枪或焊钳的完好性等。同时,还要对焊条、焊丝等焊接材料进行严格的筛选和检验,确保其符合设计要求。焊条和焊丝应存放在干燥、通风良好的地方,避免受潮和污染。对于有特殊要求的焊接材料,如需要预热的焊条,应按照规定进行预热处理。
- (2)焊接坡口的检查和清理:焊接坡口是焊缝形成的关键部位,其质量和清洁度直接影响焊接质量。因此,在焊接前必须对焊接坡口进行仔细的检查和清理。检查坡口的尺寸、形状和角度是否符合设计要求,确保坡口能够提供良好的熔合面和焊缝形状^[2]。同时,还要对坡口及其周围区域进行彻底的清理,去除油污、锈迹、氧化皮等杂质,以确保焊接过程中熔池的纯净度和焊缝的质量。
- (3)焊接工艺评定:焊接工艺评定是确保焊接质量的重要环节。对于首次采用的钢材、焊接材料、焊接方法或焊接参数组合,必须进行焊接工艺评定试验。通过试验,可以验证焊接工艺的可行性,确定最佳的焊接参数和操作规程,为后续的焊接作业提供可靠的依据。焊接工艺评定试验应包括焊缝的外观检查、无损检测、力学性能试验等内容,以确保焊缝的全面质量。

2.2 焊接过程中的控制

焊接过程中的控制是确保焊接质量的关键环节,主要包括焊接参数的控制、焊接顺序的控制以及焊接环境的控制。

- (1)焊接参数的控制:焊接参数是影响焊接质量的重要因素之一。在焊接过程中,必须根据钢材种类、板厚、焊接位置等因素选择合适的焊接参数,如焊接电流、电压、焊接速度等。焊接电流过大或过小都会导致焊缝质量下降,电压的波动也会影响焊缝的稳定性。因此,在焊接过程中应严格控制焊接参数,确保其在规定范围内波动。
- (2)焊接顺序的控制:焊接顺序对焊接变形和焊接应力有重要影响。合理的焊接顺序可以减少焊接变形和焊接应力,提高焊缝的质量。例如,对于对称结构,应

采用对称焊接的方法,使焊缝两侧同时受热和冷却,从 而减少变形。对于长焊缝,可以采用分段焊接的方法, 将长焊缝分成若干小段进行焊接,每段焊接完成后进行 适当的冷却,以减少焊接应力和变形。

(3)焊接环境的控制:焊接环境对焊接质量也有重要影响。在焊接作业区,应确保环境温度、相对湿度和风速等符合规定要求。环境温度过高或过低都会影响焊缝的冷却速度和组织形成,相对湿度过大容易导致焊缝产生气孔等缺陷,风速过大则会吹散保护气体,影响焊缝的质量。因此,在焊接过程中应严格控制焊接环境,确保其在适宜范围内。

2.3 焊接后的检查与处理

焊接后的检查与处理是确保焊接质量的最后一道关 卡,主要包括外观检查、无损检测以及焊接变形的矫正。

- (1)外观检查:焊接完成后,首先对焊缝进行外观检查。外观检查是最直接、最简便的检查方法,可以通过观察焊缝表面的形状、色泽、光泽等来判断焊缝的质量。焊缝表面应平整、光滑,无气孔、夹渣、裂纹等缺陷。对于发现的表面缺陷,应及时进行修补或处理。
- (2)无损检测:无损检测是确保焊缝内部质量的重要手段。对于重要焊缝或受力复杂的焊缝,应进行超声波探伤、射线探伤等无损检测^[3]。超声波探伤可以检测焊缝内部的裂纹、夹渣等缺陷,射线探伤则可以直观地观察焊缝内部的组织结构和缺陷情况。通过无损检测,可以及时发现并处理焊缝内部的缺陷,确保焊缝的全面质量。
- (3)焊接变形的矫正:焊接过程中由于热输入和冷却速度的不同,容易产生焊接变形。对于焊接变形较大的构件,应进行矫正处理。矫正方法包括冷矫和热矫两种。冷矫是在室温下对构件进行机械矫正,如采用压力机、矫正器等设备对变形部位进行施加压力,使其恢复原形。热矫则是在加热状态下对构件进行矫正,通过加热使变形部位产生塑性变形,然后冷却固定,达到矫正的目的。在选择矫正方法时,应根据构件的材质、形状、变形程度等因素进行综合考虑,确保矫正效果和质量。

3 钢结构焊接技术的改进建议

3.1 推广自动化焊接技术

在钢结构焊接领域,自动化焊接技术的引入与推广 是提高焊接质量和效率的重要途径。传统的手工焊接方式虽然灵活,但受限于焊工的技能水平、体力状况以及 工作环境等多种因素,难以实现稳定的高质量焊接。而 自动化焊接技术,如自动化气体保护焊、埋弧焊等,则 能够显著克服这些局限。自动化气体保护焊通过精确的 控制系统,能够确保焊接过程中保护气体的稳定供给, 有效防止焊缝受到空气中有害气体的侵蚀, 从而提高焊 缝的金属纯度和力学性能。同时,自动化系统能够根据 预设的焊接参数,如电流、电压、焊接速度等,进行精 确控制,确保焊缝的一致性和均匀性。这种精确控制不 仅提高了焊接质量,还大大减少了人为因素带来的焊接 缺陷。埋弧焊是另一种值得推广的自动化焊接技术。它 利用电弧在焊剂层下燃烧进行焊接,焊剂熔化后形成熔 渣,保护焊缝金属不受外界污染。埋弧焊的自动化程度 高,焊接速度快,适用于长直焊缝和大型构件的焊接。 通过优化埋弧焊的焊接参数和焊剂配方,可以进一步提 高焊缝的质量和效率。为了推广自动化焊接技术,建筑 行业和相关企业应加大对自动化焊接设备的投入和研发 力度。同时,还应加强对自动化焊接技术的培训和普及 工作。通过举办培训班、研讨会等形式,提高建筑企业 和焊工对自动化焊接技术的认识和掌握程度。鼓励企业 采用自动化焊接技术,提供政策支持和资金补贴,降低 企业采用新技术的成本和风险。

3.2 加强焊工培训和管理

焊工是钢结构焊接施工中的关键因素之一。焊工的 技能水平和质量意识直接影响到焊接质量的好坏。因 此,加强焊工培训和管理是提高焊接质量的重要途径。 首先,应建立完善的焊工培训体系。通过制定科学的培 训计划和大纲,确保焊工能够系统地学习焊接理论知 识、操作技能和质量控制方法。培训内容应包括焊接原 理、焊接材料、焊接设备、焊接工艺、焊接缺陷及预防 措施等方面。同时,还应注重培养焊工的质量意识和安 全意识, 使其能够严格遵守焊接操作规程和质量标准[4]。 其次,应加强对焊工的考核和认证工作。通过建立完善 的考核机制和认证体系, 对焊工的技能水平进行客观评 价。考核内容应包括理论知识考试和实际操作技能考核 两部分。只有经过严格考核并取得相应资质的焊工才能 上岗作业。这样可以有效确保焊工的技能水平满足施工 要求,提高焊接质量。此外,还应加强对焊工的日常管 理和监督。建立健全的焊工档案和管理制度,对焊工的 基本信息、培训经历、考核成绩等进行详细记录。定期 对焊工进行复审和培训,确保其技能水平始终保持在较 高水平。同时,还应加强对焊工施工现场的监督和检 查,确保其严格遵守操作规程和质量标准。

3.3 优化焊接工艺和参数

针对不同类型的钢材和焊接要求, 优化焊接工艺和 参数是提高焊接质量和效率的关键。首先,应选择合适 的焊接方法。根据钢材的种类、厚度、焊接位置以及施 工条件等因素,选择最适合的焊接方法。例如,对于薄 板焊接,可以采用气体保护焊或钨极氩弧焊等方法;对 于厚板焊接,可以采用埋弧焊或电渣焊等方法。其次, 应合理选择焊接材料。焊接材料的选择应根据钢材的成 分、性能以及焊接要求来确定。确保焊接材料与钢材具 有良好的匹配性,避免产生焊接缺陷和降低焊缝的力学 性能。同时,还应注意焊接材料的保管和使用,避免受 潮、污染或过期等情况影响焊接质量。在焊接顺序方 面,应根据构件的形状、尺寸和受力情况等因素来合理 安排。采用对称焊接、分段焊接或跳焊等方法,可以减 少焊接变形和焊接应力,提高焊接质量。同时,还应注 意控制焊接速度、焊接电流和电压等参数,确保焊缝的 稳定性和一致性。此外,还可以通过采用预热、后热和 缓冷等措施来优化焊接工艺。预热可以减小焊接接头的 温差,降低焊接应力和变形;后热可以促进焊缝中氢的 逸出,防止产生氢致裂纹;缓冷则可以减小焊缝的冷却 速度, 有利于焊缝组织的转变和性能的提高。

结语

钢结构施工中的焊接技术是保证工程质量和施工安全的重要环节。通过加强焊接前的准备、焊接过程中的控制、焊接后的检查与处理以及推广自动化焊接技术、加强焊工培训和管理、优化焊接工艺和参数等措施,可以有效提高钢结构焊接质量,为钢结构建筑的发展提供有力保障。

参考文献

[1]高超.钢结构制作工艺流程及焊接技术[J].工程建设与设计,2024,(20):157-159.

[2]郭文琦.我国建筑钢结构焊接技术及其应用探讨 [C]//廊坊市应用经济学会.对接京津——区域辐射基础教 育论文集.乌鲁木齐市米东区职业中等专业学校,2022:7.

[3]李晓霞.高层建筑钢结构焊接技术要点的探析[J].建筑安全,2022,37(07):26-28.

[4]王雪峰.建筑钢结构焊接技术的发展现状和发展趋势[J].四川建材,2021,47(03):107-108.