水利工程施工中混凝土防渗墙施工工艺研究

刘立安

河北省水利工程局集团有限公司 河北 石家庄 050021

摘 要:水利工程作为社会发展的基石,其重要性不言而喻。混凝土防渗墙作为水利工程的关键组成部分,对于保障水资源高效利用、稳固工程结构及保护周边生态环境具有重大意义。本文旨在深入探讨水利工程施工中混凝土防渗墙的施工工艺,从施工准备、导墙修筑、造孔清孔、钢筋笼制作安装到灌浆技术及施工管理,以期为提高水利工程防渗能力、确保工程质量提供理论支撑与实践指导。

关键词:水利工程施工;混凝土防渗墙;施工工艺

引言水库大坝是水利工程中的重要内容,发挥了提供社会用水用电、防洪抗涝等重要作用。本文聚焦水利工程施工中混凝土防渗墙工艺。阐述其施工意义,关乎水资源利用、工程稳固与生态保护。介绍施工工艺,含施工各环节要点;还提出优化策略,涵盖加强设计勘探、优化施工技术、提升灌浆效果、强化管理检验,旨在提升混凝土防渗墙施工应用水平,保障水利工程质量与效益。

1 水利工程应用防渗技术的意义

水利工程宛如社会发展的生命线, 在供水、防洪、 灌溉等诸多关键领域都担当着无可替代的重要角色,而 防渗技术的应用更是意义深远、举足轻重。(1)保障水 资源高效利用。在水资源愈发珍贵稀缺的当下,水利设 施一旦出现渗漏问题,后果不堪设想。供水工程里,哪 怕细微的漏水点, 也会让大量生活用水白白流失, 导致 部分区域供水不足,居民生活受到影响;灌溉渠道若是 渗漏频发,农作物得不到充足滋养,产量与质量必然大 打折扣。防渗技术严丝合缝地封堵每一处漏洞, 让水资 源不再无端损耗,沿着既定路线精准输送,极大提升了 水资源的利用效率。(2)稳固水利工程结构。持续不断 的水流渗透,会一点点侵蚀堤坝、水闸等工程的根基与 坝体,内部土体逐渐变软、松散,结构强度直线下降。 防渗技术恰似坚固的防护壁垒,全方位抵挡水流侵袭, 大幅削减侵蚀危害,有力维系工程结构稳定,延长工程 服役年限。(3)保护周边生态环境。渗漏水流裹挟着泥 沙,一旦涌入周边土壤、水域,便会引发一系列生态连 锁反应。而有效的防渗手段,截断渗漏源头,让周边生 态系统维持自然平衡,保障生物多样性。

2 水利工程中混凝土防渗墙施工工艺

2.1 施工准备与测量定位

施工准备工作是水利工程混凝土防渗墙施工顺利开

展的基石。场地平整方面,需先清理施工区域内的杂 物、石块与障碍物,利用推土机、装载机等机械作业, 让场地达到坚实、平坦的状态, 为后续搭建临时设施与 设备停放创造条件。对于测量定位,要组织专业测量团 队,依据设计图纸,精准测定防渗墙的中心线。借助全 站仪、水准仪等精密仪器, 反复核对数据, 误差严格控 制在毫米级别,标记出关键控制点。设计审查不容小 觑,施工、监理、设计三方人员齐聚,对防渗墙设计方 案的结构强度、墙体厚度、深度等关键参数细致研讨, 排查不合理之处及时优化。施工设备配置需综合考量工 程规模与地质条件,配备充足的钻孔机械、泥浆搅拌 机、起重机等,且进场前全面检修调试,保证性能完 好。人员配置上,选拔有丰富防渗墙施工经验的技术人 员、熟练操作工人,开展针对性安全与技能培训,为施 工筑牢人力基础。修建施工平台,要依据承载要求,选 用合适的填方材料,分层压实;导墙修筑时,精确放 样,做好基础处理,为后续施工提供稳固支撑[1]。

2.2 导墙修筑与泥浆制备

(1)导墙修筑材料与前期准备。施工前必须做好充分的场地清理工作,包括移除杂物和石块,平整地面,为机械设备的进场作业创造良好的环境。基槽开挖环节至关重要,小型挖掘机首先入场,根据设计图纸规定的导墙位置与走向进行粗挖。施工人员使用水准仪、经纬仪等测量工具频繁校验,为后续工序奠定坚实基础。(2)完成基槽开挖并通过验收后,进入关键的钢筋绑扎阶段。技术人员严格按照设计蓝图选取规格合适的钢筋,精确控制钢筋间距,利用扎丝将主筋与箍筋牢固结合,构建起坚固的钢筋骨架,承担后续施工的各种负荷。支模时选用高精度模板,确保拼接处严丝合缝,防

止漏浆现象。模板安装完毕后, 开始浇筑混凝土, 并通

过振捣棒均匀插入混凝土各处,持续振捣直到表面泛浆

且无气泡冒出,以保证混凝土密实度。(3)膨润土因 具有优异的吸水性和悬浮性而成为首选原料。施工时, 先将膨润土缓慢加入搅拌池并加水,使膨润土颗粒充分 吸水膨胀并分散开来,初步形成具有一定黏性的泥浆。 接着按需添加纯碱(用于调节酸碱度)和羧甲基纤维素 (CMC,增强泥浆黏度与稳定性),再次充分搅拌。最 终制得的泥浆性能指标需精准达标:比重稳定在1.05至 1.2之间,既能稳固孔壁又不影响施工;粘度维持在18至 30秒,确保钻渣有效悬浮;含砂率不超过4%,失水量和 泥皮厚度也需满足既定标准^[2]。

2.3 造孔与清孔换浆

(1)造孔设备的恰当选择,是施工顺利推进的首要 前提。针对软土地层,回转式钻机堪称首选。当遭遇坚 硬的岩层时,冲击式钻机便派上用场。它依靠强大的冲 击力,一下又一下地砸向岩石,逐步破碎坚硬岩体,为 后续施工开辟道路。(2)施工方法也各有千秋。钻劈法 常用于打造较厚的防渗墙, 前期先由钻机精准钻孔, 随 着深度增加,再启用劈裂器施力于相邻钻孔间的土体, 反复循环这一动作。两钻一抓法则更为高效, 先是钻机 钻出导向孔, 抓斗随后大显身手, 迅速抓取其间土体, 大大加快了施工节奏。(3)造孔全程,质量把控容不 得丝毫马虎。实时监测孔斜是重中之重,每钻进特定深 度,专业人员就得用测斜仪细致检查,一旦发现孔斜率 超出0.4%这一红线,必须立刻纠偏,回填重钻也绝不含 糊。同时,施工人员还得时刻留意地层变化,敏锐感知 土质差异,灵活调整钻进参数,按需变动,以此保障成 孔始终稳定。(4)抽筒法操作直观,凭借抽筒频繁出入 孔内,将泥浆与钻渣一点点带出;泵吸法则借助强劲的 泥浆泵吸力, 快速清理孔内杂质。清孔标准极为严苛, 孔底沉渣厚度务必严控在10厘米以内, 泥浆性能也要焕 然一新,比重得降到1.15以下,粘度稳定在17-20s,含砂 率不超3%。各项指标全部达标,后续钢筋笼下放、混凝 土浇筑才能稳稳当当,避免墙体出现夹渣、蜂窝等棘手 缺陷,筑牢防渗墙品质根基[3]。

2.4 钢筋笼制作与安装

(1)钢筋笼作为水利工程混凝土防渗墙的关键骨架,其制作起始于精心选材。依据设计给出的精确规格,采购人员需严格筛选优质钢筋,不仅查看钢筋的出厂合格证明,还会抽样送去专业实验室检测,确保其强度、延展性等关键性能达标。材料入场后,转运至宽敞平整的加工场地,随即开启放样工序。技术人员用高精度的测量工具,为主筋与箍筋的加工划定清晰路线。

(2)完成各部件加工,组装钢筋笼时,工人先将主筋有

序排列,再把箍筋逐一套人,必要时,还会辅以点焊加固。成型后的钢筋笼并非直接投入使用,而是全面检查尺寸,长度偏差严格控制在±50毫米内,宽度与高度也限定在±10毫米范围,钢筋规格、数量同样不容有误。运输阶段鉴于钢筋笼较长较重的特性,车上配备专门设计的稳固托架,牢牢托住钢筋笼。车辆行驶在运输路线上,应避开颠簸路段,防止途中出现变形,守护其完整状态。(3)安装时起吊设备的选择至关重要,操作人员规划起吊点,多点均衡受力,避免钢筋笼因自重可能产生的变形、扭曲风险。下放时操作人员操控起重机,让钢筋笼对准孔位,以缓慢又匀速的节奏下沉。下放全程,专人盯着孔内状况,一旦遭遇阻碍,即刻停下排查原因,查明后迅速处理。当钢筋笼终于就位,顶端定位更要精准,做好临时固定,让工程质量有坚实保障^[4]。

3 优化水利工程中混凝土防渗墙施工工艺应用水平 的策略

3.1 加强施工设计与地质勘探

(1)施工设计是水利工程混凝土防渗墙施工的蓝 图, 地质勘探则是绘制这份蓝图的关键依据。在项目筹 备初期,施工设计团队需联合地质勘查专家,组建专业 的调研小组。调绘工作要覆盖施工区域及其周边广袤范 围,利用高精度的测绘仪器,绘制详尽地形图,标记出 山川、河流、沟壑等地形地貌特征,分析坡度、坡向对 防渗墙布局的潜在影响。(2)钻探环节更为关键,要 依据前期地形分析, 科学规划钻孔位置与间距, 钻孔深 度直达预期防渗墙底部以下一定深度,精准提取不同地 层的岩芯样本。针对软土层,不能仅知晓其分布范围、 厚度, 更要利用专业实验设备, 测定密度、孔隙比、压 缩系数等物理力学性质, 剖析其承载能力与透水特性。 (3)水文情况调研要建立长期监测点,收集水位季节 性变化、水流速度、流量等数据, 气候调查则聚焦降水 规律、暴雨强度、干旱周期等要素。有了海量一手资料 后,设计团队展开头脑风暴。针对软土层易塌陷、渗漏 风险高的问题, 若是浅层软土, 可考虑预先加固处理, 如采用换填法,挖除软土换为透水性良好的砂石料;深 层软土则借助深层搅拌桩等复合地基技术,增强土体稳 定性,再据此设计防渗墙嵌入深度、墙体厚度与强度, 让施工方案有的放矢, 从源头上规避渗漏隐患。

3.2 优化混凝土防渗墙施工技术

混凝土配合比试验绝非简单的材料混合尝试,而是一场基于科学与工程需求的精细调配。要综合考量施工当地的原材料特性,选取不同产地、规格的水泥、骨料、外加剂,开展多组对比试验。测试新拌混凝土的坍

落度、扩展度,模拟不同施工时长后的凝结时间、硬化 强度,根据防渗墙在水下浇筑、长期受水压力的工况, 重点优化其抗渗性与抗侵蚀性指标,得出最佳配合比。 修筑导墙时,除常规钢筋混凝土材质,可探索新型复合 材料导墙的可行性。在设计上,运用有限元分析软件模 拟不同工况下导墙受力, 优化外形尺寸, 增强其抵抗侧 向土压力、水流冲击力的能力。固壁泥浆选择不再局限 于传统膨润土泥浆,调研新型聚合物泥浆,对比其环保 性、悬浮性、护壁效果。配制过程引入智能搅拌设备, 精准控制加料顺序与搅拌时长。施工方法上,旋挖钻机 配合冲击钻成槽时,要依据地层变化,灵活切换设备主 导地位。软地层以旋挖钻机高效钻进为主,遇硬岩则冲 击钻接力破碎。清孔换浆环节,研发自动化清孔设备, 实时监测孔内泥浆质量,精准调控换浆速度与量。钢筋 笼制安利用BIM技术预制,提前模拟安装过程,规避碰撞 风险。墙体浇筑采用导管法时,优化导管布局,利用传 感器监测混凝土上升高度,确保浇筑均匀、密实,全方 位提升施工质量。

3.3 提升灌浆技术及应用效果

灌浆技术是水利工程防渗漏的有力武器,每种灌浆 方法都独具特色与专长。(1)防渗帷幕灌浆通过在坝 基或地下建筑周边钻孔,灌注水泥浆等浆液,形成连续 防渗帷幕。其关键在于精准控制灌浆压力,依据地层渗 透系数、孔隙大小,利用压力传感器实时反馈,微调压 力,确保浆液均匀渗透填充孔隙,适用于各类坝基防 渗,尤其是岩石地基。(2)高压喷射灌浆似一把强力喷 枪,借助高压泵赋予浆液超高流速,冲击、切割土体, 浆液与土体迅速混合凝固。施工时,要根据土质条件精 准调节喷射压力、提升速度, 在砂性土中, 喷射压力适 当调高,提升速度放缓,可有效构筑防渗墙体,常用于 堤坝加固、地基防渗。(3)土坝坝体劈裂灌浆时,顺着 坝体应力薄弱方向钻孔灌浆,撑开坝体原有裂缝,填充 加固,技术难点在于精准定位应力薄弱区,通过预埋应 力监测设备找准时机灌浆, 防止坝体过度变形。控制性 灌浆则是精打细算的高手,精准控制灌浆量、压力与扩 散范围,避免浆液浪费与过度扩散。

3.4 强化施工管理与质量检验

施工管理是保障混凝土防渗墙施工工艺落地的指挥 官,技术培训是武装施工人员的关键一步。定期邀请行 业专家、资深工匠开展线下实操与线上理论结合的培训 课程,不仅讲解常规施工流程,更聚焦新工艺、新技术 难点。混凝土材料质量控制要建立全链条追溯体系,从 原材料矿山、水泥厂源头把控质量,进场时每车必检, 抽检水泥强度、骨料级配等关键指标,不合格品一票否 决。灌浆过程管理更为精细,安装智能灌浆监测系统, 实时记录灌浆压力、流量、浆液密度,一旦数据异常, 立即预警, 现场管理人员迅速响应调整。提升质量检验 人员素质,要制定系统培训计划,涵盖岩土工程、材料 检测、水利规范等知识模块,鼓励考取专业资质证书。 充实技术储备,引进先进检测设备,如高精度探地雷达 用于检测防渗墙内部缺陷,超声波检测仪评估混凝土密实 度。在检验流程上,划分施工前原材料检验、施工中隐蔽 工程验收、施工后整体质量评定阶段, 出具详实检测报 告,以严格管理与精准检验驱动施工水平稳步攀升。

结语

综上所述,混凝土防渗墙施工工艺在水利工程中扮演着至关重要的角色,通过优化混凝土配合比及施工技术,提升灌浆技术应用效果,并强化施工管理与质量检验,可以显著提高防渗墙施工水平和工程整体性能。未来,随着新材料、新技术的不断涌现,进一步探索智能化、环保型施工方法将成为发展方向,为水利工程建设提供更加坚实的技术支撑。

参考文献

- [1]黄鑫策,杨信.水利工程施工中混凝土防渗墙施工工艺研究[J].砖瓦世界,2023(2):178-180.
- [2]于耀龙.水利工程施工中的混凝土防渗墙施工工艺研究[J].工程技术研究,2023,5(3):56-58.
- [3]张雪,张松露.水利工程施工中混凝土防渗墙施工工艺研究[J].居业,2022(1):61-63.
- [4]顾超.水利工程施工中混凝土防渗墙施工工艺研究 [J].科技创新导报,2021,18(35):81-83.