水利工程水闸泵站施工技术及质量管理研究

苏建民

鄄城县引黄灌溉工程管理服务中心 山东 菏泽 274600

摘 要:本文探讨了水利工程水闸泵站施工的关键技术及质量管理。文章概述了水闸泵站施工技术的复杂性及其在水利工程中的重要性,分析基坑开挖、混凝土工程施工及金属结构安装等关键技术要点。在质量管理方面,提出构建质量管理体系、加强施工过程中的质量控制以及处理质量问题与事故的方法。强调施工安全与环境保护管理的重要性,包括安全管理制度、施工现场管理、应急救援预案及环保措施等方面的内容。

关键词:水利工程;水闸泵站施工;质量管理

1 水利工程水闸泵站施工技术概述

水利工程中的水闸泵站施工技术是一项复杂而关键 的工程活动,它在水资源的调配、防洪排涝、农业灌溉 及城市供水等方面发挥着举足轻重的作用。水闸泵站作 为水利工程的重要组成部分,其施工技术直接关系到工 程的效能与安全性。水闸泵站的施工技术大致可以分为 前期准备、基础施工、主体结构施工、设备安装及调试 等阶段。在前期准备阶段,需详细审阅施工图纸,编制 施工组织设计,明确施工方案、进度及质量控制措施, 并据此采购施工材料、准备施工设备、组织施工队伍, 同时完成施工场地的平整、排水及围护等工作。基础施 工阶段,主要进行地基处理、混凝土浇筑等工作,确保 泵站基础的稳固性。主体结构施工则涵盖泵房、进出水 管道、设备基础等关键部位的施工, 需严格按照设计要 求进行,保证结构的完整与安全性。设备安装阶段涉及 泵、电机、配电柜等关键设备的安装与调试,以及电气 自动化系统的布置与调试,确保设备能够正常运转并满 足设计要求。另外,还需完成管道系统的安装,包括进 出水管道、压力管道等,保障水流的顺畅与压力的稳 定: 调试与验收阶段, 对工程进行全面检查, 确保泵站 水闸各项功能正常,施工质量符合设计要求[1]。此过程 中, 需特别关注设备的调试与试运行, 及时发现并解决 潜在问题,确保泵站水闸能够安全、稳定地投入使用。

2 水利工程水闸泵站施工关键技术分析

2.1 基坑开挖技术要点

基坑开挖是水闸泵站施工的首要步骤,也是奠定整个工程基础的关键环节。开挖技术不仅影响工程的施工进度,更直接关系到工程质量和安全。在基坑开挖前,必须进行详尽的地质勘察和水文分析,了解场地的地质条件、地下水位、土壤特性以及周边建筑物情况,为后续的施工方案制定提供准确的数据支持。基于勘察结

果,设计人员需精心制定开挖方案,明确开挖深度、开 挖方法以及支护措施。在开挖过程中,优先选择机械开 挖方式以提高效率。对于泵站基坑, 明挖技术和边坡开 挖技术是最常用的开挖方法。明挖法因其简单成熟、高 效便捷的特点而被广泛应用。施工时应从地表向下逐层 开挖, 开挖深度需与设计标高等同, 同时遵循"边挖边 支"的原则,确保基坑稳定性和施工安全性。在开挖过 程中,还需做好基坑排水工作,通过设置排水沟、截水 沟、挡水台和排水井等设施,打造完善的排水管网,防 止积水影响施工进展。边坡开挖则是一种更安全的基坑 开挖方式, 尤其适用于地质条件复杂的场地。该方法通 过放出足够边坡,将直上直下的基坑开挖方式转化为斜 坡下挖,有效避免了土壁倒塌的风险。在开挖边坡时, 同样需要采取分层分段开挖支护的方式,确保施工质量 和安全。支护措施是基坑开挖中不可或缺的一环;常用 的支护技术包括土钉墙支护、土层锚杆支护和水泥挡墙 支护等。土钉墙支护技术通过加固天然土体,形成稳定 可靠的支护结构,增加了边坡的整体稳定性和超载承受 力。土层锚杆支护技术则通过将锚杆插入土层中,与土 层和基坑围护结构相连,保证支护土层的稳定性。水泥 挡墙支护技术则是利用水泥浆与天然土层混合,形成不 易透水、稳定性强的挡墙。在选择支护技术时,应根据 地质条件、开挖深度以及周边环境等因素综合考虑,确 保支护效果达到最佳。

2.2 混凝土工程施工技术要点

混凝土工程是水闸泵站施工中的重要组成部分,其 施工质量直接关系到工程的结构强度和耐久性。在混凝 土工程施工过程中,必须严格控制原材料质量、施工工 艺以及养护措施等关键环节。在原材料选择方面,应确 保水泥、砂、碎石等材料的品质符合施工规范及标准。 水泥应采用普硅水泥,并严格控制其拌和比例。砂料细 度模数应在2.4~3.0之间,碎石选用2级配,最大粒径不超 过4cm。外加剂的选择也需根据不同部位和气候条件来 确定,确保混凝土的性能满足设计要求。在混凝土浇筑 前,需做好充分的准备工作。这包括对模板、钢筋、预 埋件等进行检查,确保其规格、数量、位置准确无误, 同时清理仓面,排除积水、杂物,为混凝土浇筑创造良 好的施工条件。混凝土浇筑时应采用平铺法或台阶法, 控制浇筑层厚度和铺盖面积,确保混凝土在初凝前能够 及时覆盖。振捣器应按照顺序依次振捣,避免漏振和过 振现象的发生[2]。在浇筑过程中,还需严格控制混凝土的 入仓温度, 防止因温度过高导致混凝土裂缝的产生; 浇 筑完毕后, 应及时采取措施进行养护, 避免因养护不及 时导致混凝土早期裂缝的出现。养护时间一般不少于14 天, 养护方式以人工洒水为主, 特殊天气下需采取覆盖 措施。对于立体墙柱、侧模等难以采用人工洒水养护的 部位,可采用喷涂养护剂的方式进行养护。养护期间, 应定期对混凝土表面进行检查, 发现异常情况及时处 理,确保混凝土达到设计要求的强度和耐久性;裂缝是 混凝土工程中的常见问题,不仅影响工程美观,更可能 对工程的结构安全造成威胁。因此, 在施工过程中应严 格控制混凝土的配合比、浇筑温度、振捣质量等关键因 素,同时加强施工管理,确保施工质量和进度。对于已 出现的裂缝, 应根据裂缝的性质和严重程度采取相应的 处理措施,如灌浆、注浆、粘贴钢板等,确保工程的结 构安全和耐久性。

2.3 金属结构安装技术要点

金属结构的安装质量直接影响到泵站的使用效果和 运行安全,因此必须高度重视。(1)在金属结构安装 前,应首先对金属构件进行检查与验收,确保其规格、 型号、质量等符合设计要求。对于闸门、启闭机等关键 部件,还需进行组装试验,确保其运行平稳、无异常。 在安装过程中,应严格按照施工图纸和规范进行操作, 控制安装精度和误差范围。(2)闸门的安装是水闸泵 站金属结构安装中的重中之重。在安装前,需对闸门进 行检查与调试,确保其启闭灵活、无卡阻现象。在安装 过程中, 应严格控制闸门的安装高度和水平度, 同时确 保闸门与闸槽的间隙均匀、密封良好。在安装完成后, 还需对闸门进行调试,确保其运行平稳、无异常声音。 (3) 启闭机的安装同样需要注意精度和误差的控制。在 安装前,需对启闭机的各个部件进行检查与调试,确保 其运转灵活、无异常。在安装过程中, 应严格按照施工 图纸和规范进行操作,控制安装精度和误差范围。在安 装完成后,还需对启闭机进行调试,确保其运行平稳、

无异常现象,同时满足设计要求的启闭力和启闭速度。 (4)管道的安装也是金属结构安装中的重要环节。在安装前,需对管道进行检查与验收,确保其内壁光滑、无锈蚀、无裂纹等缺陷。在安装过程中,应严格控制管道的安装位置和坡度,同时确保管道与法兰的连接紧密、无渗漏。在安装完成后,还需对管道进行打压试验,确保其能够承受设计要求的压力而不发生泄漏。

3 水利工程水闸泵站施工质量管理研究

3.1 质量管理体系构建

构建科学合理的水闸泵站施工质量管理体系是质量管理的基础。第一,建立由项目负责人、技术负责人、质量管理人员、安全管理人员等构成的质量管理网络,明确各岗位职责,形成层层负责、上下联动的质量管理机制。制定详细的质量管理制度和操作规程,确保各项施工活动都有章可循、有据可查。第二,加强人员培训和教育,提高全体施工人员的质量意识和技能水平。通过定期组织技术培训、质量意识教育等活动,增强施工人员的责任感和质量意识,确保他们在施工过程中能够严格遵守质量标准,提高施工质量^[3]。第三,建立有效的质量监督和检查机制,对施工过程进行实时监控和定期检查,及时发现和解决质量问题。通过设立专职质量检查员、采用先进的质量检测仪器和技术手段等措施,确保施工质量的全面控制和持续改进。

3.2 施工过程中的质量控制

在水闸泵站施工过程中,质量控制是确保工程质量的关键,在材料采购方面,严格按照设计要求和国家相关标准进行采购,确保所有材料的质量符合工程需要。加强对材料供应商的考核和管理,建立稳定的供应商关系,确保材料供应的及时性和可靠性;在施工工艺方面,按照施工图纸和规范进行操作,确保各项施工活动符合设计要求。对于关键工序和隐蔽工程,应实施旁站监督和专项检查,确保施工质量得到有效控制;加强施工现场的组织和管理,确保施工活动的有序进行;在质量检验方面,建立完善的检验制度和检验流程,对施工过程进行实时检验和定期检查。通过采用先进的质量检测仪器和技术手段,对施工质量进行全面、客观的评价,及时发现和解决质量问题。同时建立质量追溯机制,确保对出现质量问题的部位进行追溯和处理。

3.3 质量问题与事故处理

在水闸泵站施工过程中,难免会遇到质量问题和事故。为了妥善应对这些问题和事故,必须建立有效的处理机制和应急预案。(1)建立健全的质量问题和事故报告制度,确保问题和事故能够得到及时报告和处理。对

于出现的质量问题和事故,立即组织人员进行调查和分析,查明原因和责任,提出改进措施和处理意见。(2)加强质量问题和事故的预防工作。通过加强对施工过程的质量监控和检查,及时发现和消除潜在的质量隐患,加强对施工人员的培训和教育,提高他们的质量意识和技能水平,增强他们应对质量问题和事故的能力。(3)建立质量问题和事故的应急处理机制。在问题和事故发生后,能够迅速启动应急预案,组织人员进行抢修和处理,最大限度地减少损失和影响,对处理过程和结果进行记录和总结,为今后的施工提供经验和教训。

4 水利工程水闸泵站施工安全与环境保护管理

4.1 施工安全管理

4.1.1 安全管理制度与责任制

建立健全的安全管理制度是施工安全管理的基础, 这包括制定详细的安全操作规程、安全教育培训制度、 安全检查与隐患排查制度、安全生产责任制等。其中, 安全生产责任制尤为关键,它要求明确各级管理人员和 施工人员的安全职责,将安全生产责任层层分解、落实 到人,确保每个人都能够充分认识到自己的安全责任, 积极参与安全管理。

4.1.2 施工现场安全管理措施

施工现场安全管理措施是确保施工安全的重要手段,施工现场应设置明显的安全警示标志,提醒施工人员注意安全。加强对施工现场的安全巡查和监控,及时发现和消除安全隐患。对于高风险作业区域,设置安全隔离带,严格限制非施工人员进入;还应加强对施工机械和设备的维护保养,确保其处于良好状态,避免因设备故障引发安全事故^[4]。

4.1.3 应急救援预案与演练

制定科学合理的应急救援预案,定期组织应急救援演练,是提高施工现场应对突发事件能力的重要途径。应急救援预案应明确应急响应程序、救援队伍组成、救援物资储备等内容,确保在突发事件发生时能够迅速、有效地开展救援工作。通过定期组织应急救援演练,可以检验预案的有效性,提高施工人员的应急反应能力和自救互救能力。

4.2 环境保护管理

4.2.1 施工期环境保护措施

在施工期间,采取一系列环境保护措施,减少施工噪音、扬尘、废水等污染物的排放。例如,通过安装消音器、隔音屏等设施降低施工噪音;采取洒水降尘、封闭作业等措施减少扬尘污染;建设废水处理设施,对施工废水进行处理达标后排放。加强对施工人员的环保教育培训,提高他们的环保意识,确保施工过程中各项环保措施得到有效落实。

4.2.2 废弃物处理与资源回收利用

施工过程中产生的废弃物应进行分类收集和处理。 对于可回收利用的废弃物,如废旧钢材、木材等,进行 分类回收,实现资源的再利用。对于不可回收的废弃 物,应按照相关规定进行妥善处理,避免对环境造成污 染。另外,还应加强对施工废弃物的监管,防止随意倾 倒和非法排放行为的发生。

4.2.3 生态环境保护与恢复

在施工过程中,注重对周边生态环境的保护和恢复。通过合理规划施工区域,减少对生态环境的破坏。对于因施工而受损的生态区域,采取生态修复措施,如植树造林、恢复植被等,促进生态环境的恢复和重建。同时,加强对施工区域周边生态环境的监测和评估,及时发现和解决生态环境问题。

结束语

综上所述,水利工程水闸泵站的施工技术与质量管理对于确保工程安全、提高工程质量具有重要意义。通过掌握关键施工技术要点、构建完善的质量管理体系以及加强施工安全与环境保护管理,可以有效提升水闸泵站的施工质量和运行效果。未来,随着水利工程技术的不断进步,相信水闸泵站的施工技术及质量管理水平将得到进一步提升。

参考文献

- [1]陆阿林.关于加强水利工程泵站水闸施工管理的探讨[J].水电科技,2021,004(001):P.101-102.
- [2]贾彦虎.大中型泵站施工技术及质量控制措施[J].四 川水泥,2022(07):112-114.
- [3]郭专想.水利泵站施工的质量管理策略探究[J].新型工业化,2022,12(05):133-136+140.
- [4]丁华丽.水利泵站施工质量检测关键问题探讨[J].河南科技,2021,40(31):61-63.