汽轮机节能降耗措施分析

李 昊 包头东华热电有限公司 内蒙古 包头 014040

摘 要:在全球能源转型与"双碳"目标的大背景下,能源的高效利用成为各行各业发展的关键议题。本文对汽轮机节能降耗措施展开分析。先概述汽轮机工作原理,接着剖析影响其能耗的因素,包括设备自身的汽轮机缸效率、凝汽器性能,运行参数中的主蒸汽压力和温度、汽轮机负荷率,以及运行维护方面的设备维护保养不到位和运行操作不规范等。进而提出节能降耗措施,如设备优化改造、运行参数优化、加强运行维护管理、采用先进技术和设备,为汽轮机节能提供参考。

关键词: 汽轮机; 节能降耗; 措施分析

引言:随着能源形势的日益严峻,节能降耗成为各行业关注的重点。汽轮机作为工业生产中重要的动力设备,广泛应用于电力、化工等领域,其能耗水平直接影响企业的生产成本和能源利用效率。深入研究汽轮机节能降耗措施,对于提高能源利用效率、降低企业运营成本、实现可持续发展具有重要意义。本文通过对汽轮机工作原理的介绍,分析影响其能耗的因素,并提出相应的节能降耗措施,以期为相关领域的节能实践提供有益的借鉴。

1 汽轮机工作原理的概述

汽轮机是一种将蒸汽热能转化为机械能的关键动力 设备,在电力、化工等众多领域广泛应用。其工作原理 基于一系列复杂且有序的能量转换过程。起始阶段,由 锅炉产生的高温高压蒸汽被输送至汽轮机的喷嘴。在喷 嘴中,蒸汽压力快速降低,体积急剧膨胀,流速迅猛提 升,这一过程实现了蒸汽热能向动能的首次转化,高速 汽流由此形成。随后, 高速汽流如同一股强大的力量, 猛烈冲击汽轮机的动叶片。在冲击力的作用下, 动叶片 带动转子开始旋转,蒸汽的动能顺势转化为转子的机械 能,完成了能量的二次转换。汽轮机根据蒸汽能量转换 方式的不同,可划分为冲动式汽轮机与反动式汽轮机。 冲动式汽轮机中,蒸汽主要在喷嘴内完成膨胀加速,依 靠高速汽流冲击动叶片产生的冲动作用力推动转子转 动。与之不同,反动式汽轮机里,蒸汽不仅在喷嘴中膨 胀加速, 进入动叶片后仍会持续膨胀。这种设计使动叶 片在运行时, 既受蒸汽冲击的冲动作用力, 又因蒸汽在 叶片内加速膨胀而承受反作用力,两种力共同作用驱动 转子旋转。也正因如此,反动式汽轮机在级效率上表现 更为出色,能更高效地利用蒸汽能量[1]。

2 影响汽轮机能耗的因素

2.1 设备自身因素

2.1.1 汽轮机缸效率

汽轮机缸效率是影响能耗的关键设备因素。它反映了蒸汽在汽轮机缸内实际做功能力与理想做功能力的比值。若汽轮机缸体内部结构设计不合理,如通流部分存在较大的汽流阻力,会导致蒸汽能量损失增加,使实际做功减少,进而降低缸效率,增加能耗。同时,汽轮机长期运行后,缸体内部部件磨损,汽封间隙变大,会造成蒸汽泄漏,这部分泄漏蒸汽无法有效做功,同样降低缸效率,提升能耗水平,影响汽轮机整体运行经济性。

2.1.2 凝汽器性能

凝汽器性能对汽轮机能耗影响显著。凝汽器的主要作用是将汽轮机排出的乏汽冷凝成水,建立并维持高度真空。当凝汽器真空度降低时,汽轮机排汽压力升高,蒸汽在汽轮机内的焓降减小,做功能力降低,导致能耗上升。此外,若凝汽器传热效果不佳,如冷却水管结垢、堵塞,会使乏汽冷凝速度减慢,进一步恶化真空,增加汽轮机的能耗。而且,凝汽器内部空气积聚,也会削弱其冷凝能力,提升能耗,影响汽轮机运行经济性。

2.2 运行参数因素

2.2.1 主蒸汽压力和温度

主蒸汽压力和温度是影响汽轮机能耗的关键运行参数。当主蒸汽压力和温度升高时,蒸汽的焓值增加,在汽轮机内膨胀做功的能力增强,若汽轮机在设计工况范围内运行,可实现更高的热效率,降低能耗。反之,主蒸汽压力或温度降低,蒸汽焓值下降,汽轮机做功能力减弱,为达到相同的输出功率,就需要消耗更多蒸汽,导致能耗上升。并且,主蒸汽参数的频繁波动也会使汽轮机内蒸汽流动状态不稳定,额外增加能量损失,进一步恶化能耗情况,影响机组运行经济性^[2]。

2.2.2 汽轮机负荷率

汽轮机负荷率对能耗影响明显。在一定范围内,汽轮机负荷率越高,其运行效率越高,能耗越低。这是因为高负荷率下,蒸汽流量增大,蒸汽在汽轮机通流部分的流动更接近设计工况,减少了因偏离设计工况产生的能量损失。而当负荷率过低时,蒸汽流量减小,汽轮机内部的汽流扰动加剧,漏汽损失、鼓风损失等增加,导致汽轮机整体效率大幅下降,能耗显著上升。此外,频繁变动汽轮机负荷率,也会使设备部件频繁承受热应力变化,降低设备使用寿命的同时,影响能耗稳定性。

2.3 运行维护因素

2.3.1 设备维护保养不到位

设备维护保养不到位会极大影响汽轮机能耗。汽轮机长期运行过程中,若未能按时对关键部件进行维护,如未定期清理汽轮机叶片表面的污垢,会导致叶片粗糙度增加,汽流流经时阻力增大,蒸汽能量损失增多,降低汽轮机效率,提升能耗。另外,润滑油长期未更换或油质劣化,无法对轴承等转动部件提供良好润滑,机械摩擦加剧,额外消耗机械能,转化为无用的热能,增加了能耗。同时,设备密封件老化未及时更换,造成蒸汽泄漏,泄漏蒸汽无法参与做功,进一步加剧能耗上升。

2.3.2 运行操作不规范

运行操作不规范是导致汽轮机能耗增加的重要因素。例如,在启动汽轮机时,若未能按照规定的暖机程序操作,过快提升转速或加载负荷,会使设备各部件受热不均,产生较大热应力,影响设备性能,导致能耗上升。运行过程中,操作人员未能及时调整凝结水水位,水位过高淹没部分凝汽器铜管,降低了凝汽器的换热效率,升高汽轮机排汽压力,减少蒸汽做功能力,增加能耗。此外,在调整汽轮机负荷时,操作幅度过大、过急,使蒸汽流量突变,导致汽轮机内部汽流不稳定,引发额外能量损失,恶化能耗情况。

3 汽轮机节能降耗措施

3.1 设备优化改造

3.1.1 汽轮机通流部分改造

汽轮机通流部分改造是节能降耗的核心手段之一。 在叶片改造方面,采用先进的空气动力学设计理念,如 优化叶片的型线与子午面流道。新型叶片能显著降低 蒸汽在通流时的阻力,使蒸汽流动更加顺畅,提高蒸汽 能量转化为机械能的效率。例如,采用可控涡设计的叶 片,能精准控制汽流的流动方向与速度分布,减少汽流 紊乱造成的能量损失。同时,对汽封系统进行升级至关 重要。运用蜂窝汽封、布莱登汽封等新型汽封技术,这 些汽封可有效减小汽封间隙,降低蒸汽泄漏量。蒸汽泄 漏减少意味着更多蒸汽参与做功,提高了汽轮机的内效率,进而降低了蒸汽消耗,实现节能目标。此外,对通流部分的整体结构进行优化,合理调整各级叶片的间距与安装角度,确保蒸汽在各级间高效传递能量,全面提升汽轮机通流部分的运行性能,降低能耗水平^[3]。

3.1.2 凝汽器改造

凝汽器改造对汽轮机节能意义重大。首先是冷却管材的升级,选用导热性能卓越的钛管替代传统铜管。钛管具有更高的导热系数,能极大增强凝汽器的传热能力,使乏汽能够更迅速地冷凝成水,有效提高凝汽器真空度。高真空度下,汽轮机排汽压力降低,蒸汽在汽轮机内的焓降增大,做功能力增强,能耗随之降低。其次,优化凝汽器内部结构,科学布置冷却水管。合理的水管布局能改善汽侧和水侧的流体流动状态,减少流动阻力,提升冷却效率。例如,采用错列布置水管的方式,增加汽流与水流的扰动,强化传热效果。再者,安装高效的真空泵系统也是关键。该系统可及时抽出凝汽器内积聚的不凝结气体,维持良好的真空环境,保障汽轮机始终在高效工况下运行,助力实现节能降耗目标。

3.2 运行参数优化

3.2.1 优化主蒸汽参数

优化主蒸汽参数是实现汽轮机节能降耗的重要手段。在汽轮机安全运行的前提下,适当提高主蒸汽压力和温度,可提升蒸汽的焓值,使蒸汽在汽轮机内具有更强的做功能力。根据热力学原理,高参数蒸汽在相同流量下能输出更多功,热效率得以提升,从而降低单位发电量的蒸汽消耗,减少能耗。但提升幅度需严格遵循设备设计规范,防止超温、超压引发设备安全问题。同时,要保持主蒸汽参数的稳定性,避免频繁波动。稳定的参数能确保汽轮机内蒸汽流动平稳,减少额外能量损失,持续维持高效运行状态,助力节能目标达成。

3.2.2 合理调整汽轮机负荷

合理调整汽轮机负荷对节能降耗效果显著。汽轮机 在设计负荷附近运行时,其内部汽流状态接近理想工 况,通流部分的能量损失最小,运行效率最高。当负荷 偏离设计值时,尤其是低负荷运行,蒸汽流量减小,汽 轮机内部漏汽、鼓风等损失增大,效率大幅降低。因 此,根据实际生产需求,精准匹配汽轮机负荷至关重要。 可通过优化调度系统,依据用能设备的实时需求,动态、 合理地调整汽轮机负荷,使其尽量运行在高效区间。

3.3 加强运行维护管理

3.3.1 建立完善的设备维护制度

建立完善的设备维护制度是确保汽轮机稳定高效运

行、实现节能降耗的基础保障。首先,应明确规定日常 巡检的时间、路线与内容,要求维护人员定时检查汽 轮机各部件的运行状况,如轴承温度、振动情况,及时 发现潜在问题,避免因小故障发展成大问题而导致能耗 增加。其次,制定科学的定期维护计划,根据设备运行 时间和工况,定期对汽轮机进行深度保养,包括叶片清 洁、润滑油更换、密封件检查与更换等。清洁叶片可减 少汽流阻力,良好的润滑能降低机械摩擦损耗,及时更 换老化密封件可防止蒸汽泄漏,全方位提升设备性能, 降低能耗。再者,建立设备维护档案,详细记录每次维 护的时间、内容及设备状态,为后续维护决策提供数据 支持,实现预防性维护,持续保障汽轮机在节能状态下 稳定运行。

3.3.2 规范运行操作流程

在启动阶段,严格按照暖机程序操作,控制升温、 升压速率,使汽轮机各部件均匀受热,避免因热应力过 大损伤设备,影响运行效率。运行过程中,操作人员要 密切关注各项参数,精准控制凝结水水位,防止水位异 常影响凝汽器换热效率和汽轮机排汽压力,进而降低能 耗。在调整汽轮机负荷时,遵循平稳、渐进的原则,避 免大幅度、急骤地增减负荷,减少蒸汽流量突变引发的 汽流不稳定和额外能量损失。同时,规范设备切换、启 停等操作步骤,减少因操作不当导致的设备空转或低效 运行时间。此外,加强对操作人员的培训与考核,确保 其熟练掌握规范操作流程,从人为操作层面保障汽轮机 始终在高效节能状态下运行,提升整体运行经济性。

3.4 采用先进技术和设备

3.4.1 汽轮机节能新技术应用

汽轮机节能新技术的应用为能耗降低带来显著成效。例如,应用智能控制技术,通过安装传感器实时监测汽轮机运行参数,利用先进算法动态调整设备运行状态。依据蒸汽流量、压力及负荷变化,精准调控汽轮机进汽阀门开度,使蒸汽量与实际需求精准匹配,避免蒸汽浪费,提高能源利用率。此外,引入回热抽汽技术,从汽轮机不同级抽出部分蒸汽,用于加热凝结水和给水,减少锅炉燃料消耗。这些抽出的蒸汽热量被充分利

用,提高了机组整体热效率。还有汽轮机转子优化技术,通过改进转子结构设计,降低转动惯量,减少启动和运行过程中的能量损耗,助力汽轮机在高效节能状态下稳定运行,降低企业能源成本。

3.4.2 新型节能设备的使用

使用新型节能设备是汽轮机节能的有效途径。比如,采用高效的真空泵组替代传统真空泵。新型真空泵组抽气能力更强,能快速建立并维持凝汽器内高真空度,使汽轮机排汽压力降低,蒸汽在汽轮机内的焓降增大,提高做功能力,降低能耗。再如,安装先进的蒸汽减温减压装置,在需要调整蒸汽参数时,可精准控制蒸汽的温度和压力,减少能量损失。该装置利用特殊结构和材料,优化蒸汽节流过程,相比传统装置,能更高效地实现参数调节,且自身能耗低。另外,引入新型的能量回收设备,将汽轮机排出的余热进行回收利用,转化为电能或其他可用能量,进一步提升能源综合利用率,全方位降低汽轮机系统能耗,提升企业经济效益与环保效益[4]。

结束语

综上所述,汽轮机节能降耗可从设备优化、运行参数调整、维护管理强化及先进技术设备应用等多方面着手。对汽轮机通流部分与凝汽器改造,优化主蒸汽参数与负荷,建立完善维护制度及规范操作流程,运用节能新技术、使用新型设备,能有效降低能耗。这不仅可提升企业经济效益,减少运营成本,还对缓解能源紧张、促进可持续发展意义重大。

参考文献

[1]何春鹏.关于电厂汽轮机节能降耗措施分析[J].科技创新与应用,2021,(32):134-135

[2]付国辉.电厂汽轮机运行的节能降耗措施研究[J].山东工业技术,2020,(18):154-156

[3]丘宇峰.电厂汽轮机节能降耗的主要措施探讨[J].中国高新技术企业,2020,(06):102-103.

[4]许奕敏.探讨电厂汽轮机运行的节能降耗措施[J].科 技与企业,2021,(01):100-101