采矿工程设计优化

高健伟 苏 欣 白元亮 郭鹏飞 庞臣臣 内蒙古蒙泰不连沟煤业有限责任公司 内蒙古 鄂尔多斯 010300

摘 要:文章聚焦采矿工程设计优化展开探讨。阐述了采矿工程基础理论,涵盖其概述与设计关键要素;剖析现存问题,从技术、安全、环境层面指出不足。提出了优化原则,强调安全可靠、经济合理、环保可持续及技术先进的重要性。最后介绍优化方法,包括传统、现代及综合优化设计方法,结合实例说明综合优化设计能平衡安全、经济与环保,为采矿工程高效、安全、可持续发展提供有力支撑。

关键词: 采矿工程; 问题; 优化

1 采矿工程设计基础理论

1.1 采矿工程概述

采矿工程作为矿业领域的核心支柱,是一项综合性 极强的工程技术活动,旨在从地壳中安全、高效地开采 出具有经济价值的矿物资源,涵盖金属矿、非金属矿以 及能源矿产等。其历史可追溯至远古时期,早期人类采 用简单工具挖掘浅部矿石,满足基本生产生活需求。随 着时代发展, 采矿工程不断融合地质学、岩石力学、机 械工程、信息技术等多学科知识,逐步发展成为复杂且 精细的现代化工程体系。在现代社会, 采矿工程的重要 性不言而喻[1]。从工业制造所需的金属原料,到能源供 应的煤炭、石油、天然气等,都依赖采矿工程的稳定产 出。以我国为例,矿产资源为国民经济的持续增长提供 了坚实支撑, 采矿工程的发展水平直接影响着国家的资 源安全与经济命脉。然而采矿工程面临着诸多挑战,如 地质条件复杂多变、开采深度不断增加、生态环境保护 要求日益严格等,这促使采矿工程必须持续创新与发 展,以适应新时代的需求。

1.2 采矿工程设计的关键要素

采矿工程设计是采矿活动顺利开展的前提与核心, 其关键要素涵盖多个方面。首先,地质条件分析是基础。详细的地质勘探资料能够清晰呈现矿体的形态、产 状、矿石品位、地质构造等信息,为后续设计提供准确 依据。其次,开采方法的选择至关重要。合理的开采方 法能够平衡安全性、经济性和资源回收率。常见的开采 方法包括露天开采和地下开采,露天开采适用于埋藏较 浅、规模较大的矿体,具有生产效率高、成本低的优势;地下开采则适用于埋藏较深的矿体,但其技术要求 高、安全风险大。另外,提升运输系统、通风排水系 统、支护系统等辅助工程设计也是采矿工程设计的关键 要素。高效的提升运输系统能够确保矿石及时运出,通 风排水系统保障井下作业环境安全,可靠的支护系统防止巷道坍塌,这些系统相互配合,共同构成完整的采矿工程体系。

2 采矿工程设计现存问题剖析

2.1 技术层面问题

在技术层面,采矿工程设计存在诸多亟待解决的问题。一方面,部分矿区采用的开采技术相对落后,难以适应复杂的地质条件。例如,一些老旧矿山仍在使用传统的爆破开采方式,这种方式不仅效率低下,还容易造成矿石贫化和损失,降低资源回收率。另一方面,自动化和智能化水平较低。尽管近年来智能化采矿技术取得了一定进展,但多数矿山仍处于半机械化或机械化作业阶段,缺乏先进的传感器、自动化设备和智能控制系统,无法实现对采矿过程的实时监测和精准控制,导致生产效率难以提升,生产成本居高不下。技术创新能力不足也是制约采矿工程发展的重要因素,科研投入相对较少,产学研合作不够紧密,使得新技术、新工艺难以快速应用到实际生产中。例如,一些先进的充填开采技术虽然在理论上已较为成熟,但由于缺乏资金和政策支持,在实际推广过程中面临诸多困难。

2.2 安全层面问题

安全是采矿工程的重中之重,但在设计环节仍存在不少安全隐患。部分采矿工程设计对安全因素考虑不够充分,安全设施设计不合理或不完善。例如,通风系统设计风量不足,无法有效排出井下有害气体和粉尘,容易引发中毒、窒息和尘肺病等职业病;井下避险通道设置不规范,在发生灾害时无法确保人员快速、安全撤离^[2]。同时安全监测与预警系统建设滞后,许多矿山缺乏先进的安全监测设备和系统,不能及时发现和预测顶板冒落、透水、火灾等安全隐患。一旦事故发生,往往因缺乏有效的预警和应急措施,导致事故扩大,造成严重的人员

伤亡和财产损失。安全管理制度在设计阶段未能有效融入,部分设计未充分考虑作业人员的安全操作流程和行为规范,使得安全管理在实际执行中存在漏洞。

2.3 环境层面问题

采矿工程对生态环境的影响不容忽视,而当前设计中环境问题突出。首先,开采过程中的废弃物排放量大,矿石开采和加工过程中会产生大量的废石、尾矿和废水,这些废弃物若处理不当,会占用大量土地资源,污染土壤、水源和空气。例如,尾矿库中的重金属离子会渗入土壤和水体,对周边生态环境和居民健康造成长期威胁。其次,采矿活动会引发地质灾害,地下开采可能导致地表塌陷、山体滑坡等地质灾害,破坏地形地貌和生态平衡。露天开采则会破坏植被,造成水土流失,加剧生态环境的恶化。在采矿工程设计中,对生态修复和环境保护的重视程度不够,缺乏科学合理的生态保护与修复方案,导致矿区生态环境难以在开采后得到有效恢复。

3 采矿工程设计优化原则

3.1 安全可靠性原则

安全可靠性原则是采矿工程设计优化的重中之重, 是贯穿整个设计过程的核心准则。在设计阶段,必须将 保障人员生命安全和矿山生产安全置于首要位置。从 开采方法的选择到安全设施的精心设计,每一个环节都 要细致考量各类安全因素,确保采矿工程在全生命周期 内安全稳定运行。例如,在开采方法的选择上,要优先 选择安全性高、风险可控的方法。对于地质条件复杂、 存在断层、破碎带等不稳定因素的矿区,坚决避免采用 高风险、不成熟的开采方式, 防止发生冒顶、片帮等安 全事故。同时大力加强安全设施建设,设计一套完善的 通风、排水、避险、监测等系统。通风系统要保证井下 空气流通,降低有害气体浓度;排水系统要及时排除积 水,防止水害发生;避险设施要为作业人员提供安全的 避难场所; 监测系统要实时掌握井下安全状况。要建立 定期检查和维护制度,对安全设施进行全面"体检", 确保其始终处于最佳运行状态,为矿山安全生产筑牢坚 实防线。

3.2 经济合理性原则

经济合理性原则要求采矿工程设计在确保安全和质量的前提下,全力追求经济效益的最大化。通过优化设计方案,有效降低生产成本,提高资源回收率和生产效率,从而实现矿山经济效益的提升。在开采方法的选择上,要综合权衡矿石品位、开采成本、市场价格等多方面因素,选择最经济合理的开采方式。比如,对于低品

位矿石,若采用露天开采方式,由于矿石分布散、开采量大,会导致成本过高。此时,可考虑采用地下开采并结合先进的选矿技术,通过精细化开采和选矿流程,提高矿石利用率,降低单位成本。同时要合理规划矿山建设规模和生产进度,避免盲目扩大投资,造成资源浪费和产能过剩^[3]。在提升运输系统、设备选型等环节,要充分考虑节能降耗和设备维护成本,选用高效、节能的设备,优化运输路线,降低能耗。还要密切关注市场动态,根据市场需求变化及时调整生产计划,生产适销对路的产品,提高矿山的经济效益和市场竞争力。

3.3 环保可持续原则

环保可持续原则是采矿工程设计适应时代发展潮 流、实现可持续发展的必然要求。在设计中,必须充分 考虑采矿活动对生态环境造成的多方面影响,采取切实 有效的环境保护措施,推动资源开发与环境保护协调共 进。要严格控制废弃物排放,对采矿过程中产生的废 石、尾矿和废水进行合理处置和综合利用。例如,将废 石用于井下充填,不仅可以减少地表废石堆放,降低对 土地资源的占用和破坏,还能有效支撑井下围岩,减少 地表塌陷风险;对尾矿进行再选,通过先进的选矿技术 回收其中有价金属,实现资源的二次利用,提高资源综 合利用率;对废水进行处理,采用物理、化学、生物等 多种处理方法,去除废水中的有害物质,使其达到排放 标准或实现循环利用,减少对水资源的污染。同时加强 生态修复工作,在开采前制定科学合理的生态修复方 案,明确修复目标和措施;在开采过程中注重植被保护 和地形地貌恢复,减少对生态环境的破坏;开采结束后 及时进行土地复垦和生态重建,种植适宜的植被,恢复 矿区的生态功能, 使矿区生态环境逐步得到恢复和改 善。另外,还要积极采用绿色开采技术和清洁生产工 艺,从源头上降低采矿活动对环境的负面影响,实现采 矿行业的绿色发展。

3.4 技术先进性原则

技术先进性原则要求采矿工程设计紧跟时代发展步伐,积极引入和应用先进的技术、工艺和设备,不断提升采矿工程的科技水平和生产效率,推动采矿行业向智能化、现代化方向发展。要密切关注国内外采矿技术的发展动态,加强与科研机构、高校的合作与交流,及时引进和吸收先进的采矿理念和技术成果。例如,大力推广应用智能化采矿技术,利用物联网、大数据、人工智能等先进技术,实现采矿设备的自动化控制和远程操作。通过智能化系统,可以实时监测设备的运行状态、生产参数等信息,自动调整设备的工作模式,提高生产

效率和作业安全性;采用先进的充填开采技术,根据矿体的地质条件和开采要求,选择合适的充填材料和充填工艺,减少地表塌陷等地质灾害的发生,同时提高资源回收率,实现资源的最大化利用。还要加强技术创新,鼓励企业与科研院校开展产学研联合攻关,针对采矿工程中的关键技术难题,如深部开采的岩爆防治、复杂矿体的高效开采等,进行深入研究和技术突破,推动采矿工程技术的不断进步,为采矿行业的可持续发展提供强有力的技术支撑。

4 采矿工程设计优化方法

4.1 传统优化设计方法

传统优化设计方法在采矿工程设计中应用已久,具有一定的实用性和局限性。经验类比法是一种常用的传统方法,它通过借鉴相似条件下矿山的成功设计经验,结合本矿区的实际情况进行设计优化。例如,在选择开采方法时,参考地质条件、矿石性质相似矿山的开采方式,根据本矿区的具体情况进行适当调整。这种方法简单易行,但依赖于设计者的经验,缺乏精确的定量分析,对于复杂地质条件和特殊情况的适应性较差。数学规划法也是传统优化设计方法之一,它通过建立数学模型,运用线性规划、非线性规划等数学方法求解最优设计方案。例如,在矿山开拓系统设计中,以运输成本、建设投资等为目标函数,以地质条件、技术要求等为约束条件,建立数学模型,求解出最优的开拓方案。然而数学规划法对模型的准确性要求较高,实际采矿工程中许多因素难以精确量化,限制了其应用范围。

4.2 现代优化设计方法

随着计算机技术和信息技术的飞速发展,现代优化设计方法在采矿工程设计中得到了广泛应用。数值模拟法是现代优化设计的重要手段之一,它利用计算机软件对采矿过程进行三维建模和数值模拟,直观地展示采矿过程中应力、应变、位移等物理量的变化规律,为设计方案的优化提供依据。例如,通过有限元分析软件模拟巷道开挖过程中围岩的稳定性,优化支护方案;利用离散元法模拟矿石崩落过程,确定合理的爆破参数。数值模拟法能够考虑复杂的地质条件和采矿工艺,为设计提供准确的预测和分析[4]。智能优化算法如遗传算法、粒子群优化算法等也逐渐应用于采矿工程设计优化。这些算法通过模拟生物进化或群体智能行为,在复杂的设计空间中搜索最优解。例如,在采矿设备选型优化中,利用

遗传算法对多种设备组合方案进行搜索,以成本、效率 等为目标函数,找到最优的设备选型方案。智能优化算 法具有全局搜索能力强、适应性好等优点,能够处理传 统方法难以解决的复杂优化问题。

4.3 综合优化设计方法

综合优化设计方法结合了传统方法和现代方法的优 势,能够更全面、准确地对采矿工程设计进行优化。在 实际应用中, 首先采用经验类比法和数学规划法进行初 步设计,确定设计方案的基本框架和参数范围。然后, 运用数值模拟法对初步设计方案进行详细分析和验证, 通过模拟采矿过程,发现潜在问题和不足之处。最后, 利用智能优化算法对设计方案进行进一步优化, 在考虑 多种因素的情况下,寻找最优的设计参数和方案组合。 例如, 在某大型金属矿山开采设计中, 先通过经验类比 法和数学规划法确定开采方法、开拓系统等基本方案, 再利用数值模拟软件对巷道稳定性、矿石运移等进行模 拟分析,根据模拟结果对方案进行调整。最后,运用粒 子群优化算法对开采进度、设备配置等参数进行优化, 使设计方案在安全性、经济性和环保性等方面达到最佳 平衡。综合优化设计方法能够充分发挥各种方法的优 势,提高采矿工程设计的质量和水平,为矿山的高效、 安全、可持续发展提供有力保障。

结束语

采矿工程设计优化是一项复杂且意义重大的工作, 关乎采矿工程的安全性、经济性与环保性。本文从基础 理论出发,深入剖析现存问题,明确优化原则,并详 细介绍多种优化方法。在实际应用中,需依据矿山具体 情况,综合运用各类方法,不断优化设计方案。唯有如 此,才能推动采矿工程持续创新发展,实现资源合理开 发与生态环境保护的双赢,为矿业领域的长远进步筑牢 根基。

参考文献

- [1]马朋飞.采矿工程设计优化探析[J].世界有色金属, 2022(22):77+79.
- [2]舒顺龙,曹国华,曹淑烈.采矿工程设计优化探析[J]. 世界有色金属,2022(17):66-67.
- [3]龚永林.现代化采矿工艺技术在采矿工程中的应用分析[J].世界有色金属,2022(15):28-30.
- [4]宋世杰.现代化采矿工艺技术在采矿工程中的应用 [J].矿业装备,2022(3):116-118.