承压类特种设备压力管道检验疑难问题探讨

廖国斌

湖州市敬业特种设备技术咨询有限公司 浙江 湖州 313000

摘 要:承压类特种设备中的压力管道,因其输送介质的危险性,其安全性能至关重要。检验中常遇到安装资格、材料规范、焊接质量、无损检测及验收标准等疑难问题。部分安装单位存在无证安装、材料不全、焊接工艺不合规、无损检测漏项及验收资料不实等问题。为解决这些问题,需严格实施行政许可,加强监督检验,提升安装单位对新法规的理解和执行,确保压力管道安装质量,从根本上避免安全事故的发生。

关键词:承压类特种设备;压力管道检验;疑难问题

引言:承压类特种设备中的压力管道,作为工业生产、城市燃气及热力供应等领域的关键设施,其安全运行直接关乎人民生命财产安全。然而,在压力管道的检验过程中,常面临材料检验标准不统一、安装过程复杂、腐蚀与减薄、焊接缺陷及附件与支吊架问题等诸多疑难。本文旨在深入剖析这些检验疑难问题,并提出针对性的解决策略,以确保压力管道的安全可靠运行,为相关行业的健康发展提供有力保障。

1 承压类特种设备压力管道检验的基本概述

1.1 定义与分类

承压类特种设备压力管道是指设计压力大于或等于 0.1MPa (表压),且输送介质为气体、液化气体或蒸汽的管状设备,或设计压力大于或等于0.1MPa (表压),且最高工作温度高于或等于标准沸点的液体管道。这类管道因承受内部或外部压力,在工业生产、城市燃气及热力供应等领域扮演着重要角色。根据用途、介质特性及设计压力等因素,压力管道可分为长输管道(如油气管道)、公用管道(如城市燃气、热力管道)和工业管道(如化工、石化、冶金等行业的工艺管道)。每种类型的管道都有其特定的运行环境和安全要求。

1.2 检验内容与标准

压力管道检验旨在确保其安全运行,内容涵盖材质检验、壁厚测定、无损检测、安全附件检验等多个方面。材质检验主要检查管道材料的化学成分、机械性能和焊接性能是否符合设计要求。壁厚测定用于评估管道因腐蚀、冲刷等原因导致的壁厚减薄情况。无损检测如超声波检测、射线检测等,用于发现管道内部的裂纹、夹渣等缺陷。安全附件检验则关注压力表、安全阀、爆破片等安全装置的性能是否可靠^[1]。检验工作遵循国家相关法规、标准和规范,如《压力管道安全技术监察规程》、《压力管道定期检验规则》等,这些文件详细规定了检验方法、周期、技

术要求及检验结果的判定和处理。

1.3 检验方法与流程

压力管道检验的基本方法包括资料审查、现场检查、试验与检验等环节。资料审查主要核对管道的设计、制造、安装、使用及历次检验记录,确保信息的完整性和准确性。现场检查通过目视、测量等手段检查管道的外观、焊缝、防腐层等,发现潜在问题。试验与检验则通过压力试验、泄漏试验、无损检测等手段验证管道的结构完整性和运行安全性。检验流程通常从申请与受理开始,经检验准备、现场检验、检验报告编制与出具,最终完成检验工作。整个流程需严格遵守相关法规和标准,确保检验工作的科学性和有效性。

2 承压类特种设备压力管道检验中的疑难问题

2.1 压力管道材料检验问题

(1)材料种类繁多,检验标准不统一。压力管道 所使用的材料种类繁多,从普通的碳钢、合金钢到不锈 钢、镍基合金等,每种材料都有其特定的力学性能和耐 腐蚀性要求。然而,由于不同材料可能遵循不同的国家 或行业标准,导致在检验过程中缺乏统一的标准。这要 求检验人员不仅要有广泛的专业知识,还需要熟悉各种 材料的特性和相应的检验方法,以确保检验结果的准确 性和可靠性。(2)材料质量认证不全,数据记录不完 整。在实际操作中,部分压力管道的材料质量认证可能 不够完整,甚至存在假冒伪劣材料的情况。此外,材料 在使用过程中的数据记录,如热处理记录、化学成分分 析报告等,也可能因管理不善而缺失。这些问题增加了 检验的难度,也提高了管道运行的安全风险。因此,加 强材料的质量控制,完善材料数据的记录和追溯机制, 是解决这一问题的关键。

2.2 压力管道安装影响检验难度

(1) 安装方式多样, 检验技术要求高。压力管道的

安装方式多样,如埋地敷设、架空敷设、管沟敷设等,每种方式都有其特定的检验要求。例如,埋地管道需要特别关注防腐层的完整性,而架空管道则需要检查支吊架的安装质量和管道的晃动情况。这要求检验人员具备丰富的实践经验和高超的技术水平,能够根据不同的安装方式采取相应的检验策略。(2)安装过程中存在的隐蔽工程,难以直接检验。在管道安装过程中,存在一些隐蔽工程,如焊缝的根部焊道、管道内部的防腐层等,这些部位在管道运行后难以直接进行检验。为了解决这一问题,需要在安装过程中加强质量控制,如采用射线检测或超声波检测对焊缝进行100%检验,确保焊缝质量。同时,对于管道内部的防腐层,可以采用内窥镜等先进检测设备进行检验。

2.3 腐蚀与减薄问题

(1)外部腐蚀与内部腐蚀的影响因素。压力管道的腐蚀是一个复杂的过程,受到介质成分、温度、压力、流速以及管道材料自身性质等多种因素的影响。外部腐蚀主要由大气环境、土壤条件等外部因素引起,而内部腐蚀则主要由介质中的化学成分、杂质以及管道内壁的粗糙度等因素决定。了解这些影响因素有助于制定针对性的防腐措施。(2)腐蚀导致的管道强度下降和安全隐患。腐蚀会导致管道壁厚减薄,从而降低管道的承载能力。当腐蚀严重时,管道可能发生泄漏或破裂,引发安全事故。因此,定期对管道进行腐蚀监测和评估,及时采取措施修复或更换腐蚀严重的管道段,是确保管道安全运行的重要措施。

2.4 焊接缺陷问题

(1)焊接质量控制不当导致的缺陷类型。焊接是压力管道制造和安装过程中的关键环节。焊接质量控制不当可能导致各种焊接缺陷,如裂纹、夹渣、未熔合、未焊透等。这些缺陷不仅会降低管道的强度,还可能成为介质泄漏的通道。(2)焊接缺陷对管道安全运行的影响。焊接缺陷对管道安全运行的影响不容忽视。一方面,缺陷可能导致管道在承受内压时发生破裂;另一方面,缺陷还可能成为腐蚀的起始点,加速管道的腐蚀过程。因此,加强焊接质量控制,采用先进的焊接技术和检测手段,是确保管道焊接质量的关键。

2.5 附件与支吊架问题

(1)附件的检验与维护。压力管道上的附件,如压力表、安全阀等,是确保管道安全运行的重要组成部分。这些附件需要定期进行检查和维护,以确保其性能可靠。例如,压力表需要定期校验以确保其读数准确;安全阀需要定期进行排放试验以确保其能够在规定压力

下正确开启。(2)支吊架安装质量对管道安全运行的 影响。支吊架是支撑和固定管道的重要结构件。支吊架 的安装质量直接影响管道的稳定性和安全性。如果支吊 架安装不当或损坏,可能导致管道晃动、下沉或变形, 进而引发安全事故。因此,定期对支吊架进行检查和维 护,确保其安装质量和运行状态良好,是保障管道安全 运行的必要条件。

3 承压类特种设备压力管道检验疑难问题的解决方法

3.1 完善检验标准与规范

(1)制定统一的材料检验标准和规范。材料检验 是压力管道检验的基础, 其标准和规范的统一性至关重 要。为此,相关部门应组织专家,深入调研国内外先进 的材料检验技术,结合我国实际情况,制定出一套既科 学又实用的材料检验标准和规范。这套标准应涵盖材料 的化学成分、力学性能、耐腐蚀性能等多个方面, 为检 验人员提供明确的检验依据。同时,应加强对标准的宣 贯和培训,确保检验人员能够准确理解和执行标准,提 高检验的准确性和可靠性。(2)加强安装过程的监督与 检验,确保安装质量。安装质量直接影响压力管道的运 行安全。因此,在安装过程中,应实施严格的监督与检 验制度。一方面,应加强对安装单位的资质审核,确保 其具备相应的施工能力和经验。另一方面,应派遣专业 的检验人员,对安装过程进行全程监督,包括材料的准 备、焊接、无损检测、防腐处理等关键环节。同时,在 安装完成后,应进行全面的系统检验,包括压力试验、 泄漏试验等,以验证管道的整体性能和安全性[2]。

3.2 提高检验技术水平

(1)引入先进的无损检测技术。无损检测是压力管 道检验的重要手段。随着科技的进步,越来越多的先进 无损检测技术被应用于工业领域。如超声相控阵技术、 涡流检测技术、射线检测技术等,这些技术具有检测速 度快、准确性高、对管道无损伤等优点。检验机构应积 极引入这些先进技术,提高检验效率和准确性。同时, 应加强对无损检测人员的培训,确保其能够熟练掌握并 正确应用这些技术。(2)加强对焊接质量的控制与管 理。焊接是压力管道制造和安装过程中的关键环节,其 质量直接影响管道的整体性能。因此,应加强对焊接质 量的控制与管理。一方面, 应建立严格的焊接工艺评定 制度,确保焊接工艺的科学性和合理性。另一方面,应 加强对焊工的培训和管理,提高其焊接技能和责任心。 同时, 在焊接过程中, 应实施严格的检验制度, 包括焊 前预热、层间温度控制、焊后缓冷等环节,以及焊后的 无损检测和力学性能试验,以确保焊接质量。

3.3 加强腐蚀监测与防护

(1)建立腐蚀监测系统,定期检测管道腐蚀情况。 承压类特种设备压力管道在运行过程中, 会受到介质腐 蚀、环境腐蚀等多种因素的影响,导致管道壁厚减薄、 强度下降等问题。为了及时发现并处理腐蚀问题,应建 立腐蚀监测系统,对管道的腐蚀情况进行实时监测和定 期检测。监测系统应包括在线监测设备和离线检测手段 相结合,对管道内壁和外壁的腐蚀情况进行全面监测和 分析。同时, 定期对监测数据进行处理和分析, 评估管 道的腐蚀程度和趋势, 为采取针对性的防腐措施提供依 据[3]。(2)采取有效的防腐措施,延长管道使用寿命。 针对管道的腐蚀问题, 应采取有效的防腐措施来延长管 道的使用寿命。一方面,应选择合适的防腐材料和涂层 来保护管道表面免受腐蚀侵蚀;另一方面,采用阴极保 护或阳极保护等电化学防腐方法,通过施加外部电流来 改变管道金属的电位,从而降低其腐蚀速率。此外,还 应定期对管道进行清洗和除锈处理,去除管道表面的污 垢和腐蚀产物,保持管道的清洁和光滑。

3.4 严格附件与支吊架的检验与维护

(1) 定期对附件进行检查与校验,确保其正常运 行。压力管道的附件,如安全阀、压力表、温度计等, 是管道安全运行的重要保障。因此,应定期对附件进行 检查与校验,确保其准确性、灵敏性和可靠性。对于安 全阀,应按照规定的校验周期进行校验,确保其能够在 规定的压力下正常开启和关闭;对于压力表,应定期校 验其准确性和灵敏度,确保其能够准确反映管道内的压 力变化;对于温度计,应定期校验其测量范围和精度, 确保其能够准确测量管道内的温度。(2)加强支吊架的 安装质量控制,确保其稳定性。支吊架是支撑和固定管 道的重要结构件, 其稳定性和安全性对管道的运行至关 重要。因此,在支吊架的安装过程中,应严格控制安装 质量。一方面,应确保支吊架的安装位置、安装角度和 固定方式符合设计要求;另一方面,应加强对支吊架材 料和焊接质量的检验,确保其符合相关标准和规范。在 管道运行过程中, 应定期对支吊架进行检查和维护, 及 时发现并处理松动、变形或损坏等问题, 确保其稳定性 和安全性[4]。

3.5 加强检验人员培训与管理

(1)提高检验人员的专业技能和责任心。检验人员 作为压力管道检验工作的直接执行者, 其专业技能与责任 心直接影响检验工作质量和效率。因此,需强化培训与管 理。一方面,定期组织专业技能培训,涵盖无损检测技 术、焊接质量控制、腐蚀监测与防护等内容,以此提升检 验人员专业素养和操作能力。另一方面,加强职业道德教 育,增强其责任意识和使命感,促使其严格执行检验标准 规范。(2)建立完善的检验人员管理制度,确保检验工 作的质量和效率。为保障检验工作质效,需建立健全检验 人员管理制度,涵盖招聘、培训、考核、晋升和奖惩等环 节。招聘时,严格考察应聘者专业技能与经验,确保其具 备岗位能力;培训中,着重提升人员专业技能与综合素 质,以适应工作环境和技术发展;考核时,科学评估工作 表现与技能水平,为晋升奖惩提供依据。同时,完善奖惩 机制,表彰奖励优秀人员,批评处罚表现不佳者,充分激 发检验人员工作积极性与创造力。

结束语

综上所述,承压类特种设备压力管道的检验工作面临着多方面的挑战。通过完善检验标准与规范、提升检验技术水平、加强腐蚀监测与防护、严格附件与支吊架的检验与维护,以及加强检验人员培训与管理,我们可以有效解决这些疑难问题。未来,随着科技的不断进步和经验的不断积累,我们期待能进一步提升压力管道检验的效率和准确性,为承压类特种设备的安全运行提供更加坚实的保障。

参考文献

- [1]姚俊峰.锅炉和压力容器及压力管道检验中裂纹问题探讨[J].设备管理与维修,2022,(10):94-95.
- [2]高聪.承压类特种设备压力管道检验中的裂纹问题分析[J].中国设备工程,2022,(15):159-160.
- [3]王克刚,王靖虎.承压类特种设备压力管道检验中的 裂纹问题[J].中国设备工程,2022,(16):164-165.
- [4]张伟成.分析承压类特种设备压力管道检验中的裂纹问题[J].清洗世界,2021,(11):78-79.