水利水电工程建设项目管理方法

李爱军1 傅 锐2

- 1. 东海县沭新渠灌区吴场管理所 江苏 连云港 222300
 - 2. 东海县西双湖水库管理所 江苏 连云港 222300

摘 要:本文围绕水利水电工程建设项目管理方法展开。阐述了前期管理中可行性研究、规划设计、招投标要点;实施阶段对施工进度、质量、成本、安全与环境的管理;以及合同管理、沟通协调、风险管控等关键要素。最后提出数字化协同、智能化决策、全生命周期信息集成管理等创新方法,为提升水利水电工程建设项目管理水平提供参考。

关键词:水利水电工程;项目管理;管理方法;创新管理

引言:水利水电工程作为重要基础设施,其建设项目管理至关重要。科学合理的管理方法不仅能保障工程顺利推进,还能提高工程质量和效益。随着技术发展和工程建设需求变化,传统管理方法面临挑战,需不断创新。深入探讨水利水电工程建设项目管理方法,并探索创新管理途径,对推动水利水电工程建设行业高质量发展具有现实意义。

1 水利水电工程建设项目前期管理

1.1 水利水电工程建设项目可行性研究要点

水利水电工程建设项目可行性研究,需对项目各方面进行全方位深度剖析。从必要性层面,先梳理区域水资源分布不均、季节性缺水或洪水频发等状况,通过分析现有水利设施短板,判断新建工程是否能够精准解决水资源供需矛盾,是否能有效提升区域防洪减灾能力。技术可行性研究围绕工程选址展开。对拟选地址进行地质勘探,了解地层结构、岩石特性、地下水位等情况,评估是否存在断层、滑坡等不良地质现象,以此判断建设大坝、电站厂房等设施的技术难度。结合地形地貌,研究引水、泄洪等系统布局的合理性,确保工程建设在技术层面具备可实施性。经济可行性分析则针对工程建设成本、运营维护费用进行详细估算,通过对比工程带来的发电收益、灌溉效益等,判断项目在经济上是否可行,为项目决策提供关键依据。

1.2 水利水电工程建设项目规划设计管理

水利水电工程建设项目规划设计管理,需将工程需求与区域长远发展规划紧密结合。总体规划阶段,综合考虑防洪、灌溉、发电、航运等多重功能,根据区域产业结构、人口分布、生态环境等因素,合理确定各功能的优先级和资源分配比例。比如,在农业主产区,适当加大灌溉功能规划比重;在能源需求大的地区,侧重发

电功能布局。进入详细设计环节,对建筑物结构进行精确计算与设计。大坝需根据地质条件和蓄水要求,确定合适的坝型、坝高和坝体结构;电站厂房要结合水轮机、发电机等设备尺寸与运行要求,规划内部空间布局^[1]。设备选型过程中,综合考虑性能、能耗、维护成本等因素,选择适配工程需求的设备。对施工工艺进行细化,制定科学的施工顺序和技术方案,确保各工程部分紧密配合,保障工程建设质量与运行安全。

1.3 水利水电工程建设项目招投标管理流程

水利水电工程建设项目招投标管理流程的严谨性决定项目施工质量。招投标前期,根据工程特性和需求,编制全面细致的招标文件。除明确工程范围、技术标准、工期等基本要求外,还需对工程质量验收标准、安全文明施工规范、合同条款等内容进行详细说明。招标过程严格依照法定程序进行公开招标,通过专业招标平台发布招标公告,吸引具备相应资质和实力的企业参与投标。招标方对潜在投标人进行资格预审,审查其资质等级、财务状况、类似工程业绩等,筛选出合格投标单位。评标阶段组建专业评审团队,从技术方案的可行性、施工组织设计的合理性、报价的准确性与合理性、企业信誉等多个维度,对投标文件进行综合打分与评价。按照既定评分标准,秉持公平、公正、公开原则,选定中标单位,为工程后续施工顺利开展提供有力保障。

2 水利水电工程建设项目实施阶段管理

2.1 水利水电工程建设项目施工进度管理

水利水电工程施工进度管理贯穿项目实施全程。首 先需制定科学合理的施工进度计划,依据工程规模、施 工工艺、资源配置等因素,将整个工程分解为多个阶段 性目标,明确各分项工程的起止时间与先后顺序。在施 工过程中,建立动态监控机制,定期收集实际施工进度 数据,对比计划进度,分析偏差原因。若遇天气变化、设计变更等影响施工进度的情况,及时调整施工方案与资源投入,优化施工工序,增派人员或设备,确保关键线路不受影响,保障工程按期完工。

2.2 水利水电工程建设项目质量管理体系

构建水利水电工程建设项目质量管理体系,要从多个维度着手。施工前,依据工程设计要求和相关规范,制定详细的质量标准与验收细则,明确各施工环节的质量控制要点。对施工人员进行技术交底,使其熟悉施工工艺与质量要求。施工中,加强原材料和构配件的质量管控,严格执行进场检验制度,杜绝不合格材料用于工程建设。建立质量巡查和旁站监督制度,对隐蔽工程、关键部位等进行重点监控,及时发现并纠正质量问题。通过分层、分阶段验收,确保每道工序质量达标,为下一道工序创造良好条件。

2.3 水利水电工程建设项目成本控制方法

水利水电工程建设项目成本控制需采取多种方法,贯穿于项目建设的各个阶段。在预算编制阶段,需细致考量工程各项费用,涵盖人工费、材料费、设备费等,结合市场行情与工程实际状况,制定出精准合理的成本预算^[2]。施工过程中,应着重把控材料采购成本,通过多方比选供应商、开展批量采购等举措降低材料价格,有效压缩整体支出。与此同时,科学合理安排施工人员,避免出现人员闲置或窝工现象,最大限度提升劳动效率。对于施工过程中可能出现的工程变更,必须严格履行审批程序,细致评估其对成本的影响,尽可能减少不必要的调整和浪费。还应定期开展成本核算与分析工作,及时掌握项目成本动态,精准找出成本超支或节约的具体环节,深入分析成因,持续优化成本控制措施,为后续类似工程积累宝贵经验,推动项目管理不断精细化。

2.4 水利水电工程建设项目安全与环境

水利水电工程建设项目的安全与环境管理不容忽视。安全管理方面,需构建完备体系,建立健全安全生产管理制度,清晰界定各岗位安全职责,按需配备必要安全防护设施与警示标识。针对施工人员,常态化开展安全教育培训,以提升其安全意识和自我保护能力。定期组织全面安全检查,不放过任何细节,仔细排查施工现场高空作业防护、用电安全、设备运行安全等方面的安全隐患,一旦发现问题立即整改。环境管理上,依据工程特点制定针对性环境保护措施,通过优化施工方式减少施工过程中的扬尘、噪声、废水排放等对周边环境的不良影响。同时合理规划施工场地布局,最大限度保护生态植被,对弃土弃渣进行科学妥善处理,防止造成

水土流失, 达成工程建设与环境保护的和谐共生。

3 水利水电工程建设项目管理关键要素

3.1 水利水电工程建设项目合同管理要点

水利水电工程建设项目合同管理是保障项目顺利推进的重要环节。合同起草阶段,需结合工程实际需求,明确合同双方权利与义务。对工程范围、施工标准、工期要求、价款支付方式等核心条款进行细致约定,确保内容完整、表述清晰,避免出现歧义。合同签订前,对合作方资质进行严格审查,包括企业信誉、资金实力、过往工程业绩等,确保合作方具备履行合同的能力。合同履行过程中,建立合同执行跟踪机制。定期检查合同约定事项的完成情况,如工程进度是否符合合同工期、工程质量是否达到合同标准。对于合同变更,需严格按照既定程序进行,分析变更对工程成本、工期的影响,经双方协商一致后签订补充协议。加强合同纠纷预防,及时解决施工过程中出现的分歧,避免矛盾升级,保障工程建设平稳进行。

3.2 水利水电工程建设项目沟通协调机制

水利水电工程建设项目涉及多方主体,构建有效的沟通协调机制尤为重要。首先需明确参与项目各方的职责与分工,制定沟通计划,确定沟通方式、频率与内容^[3]。建立定期会议制度,如周例会、月总结会,各方在会上汇报工程进展、提出问题与需求,共同协商解决方案。针对工程建设中的突发情况或重大问题,建立专项沟通渠道。采用现场办公、专题研讨会等形式,快速召集相关方进行沟通,避免信息传递延误。同时搭建信息化沟通平台,方便各方及时共享工程资料、施工动态等信息,打破信息壁垒。通过建立反馈机制,确保沟通内容得到有效落实,及时解决各方关切的问题,保障项目各环节紧密衔接。

3.3 水利水电工程建设项目风险管控策略

水利水电工程建设项目风险管控需贯穿项目全过程。风险识别阶段,全面梳理工程建设中可能遇到的各类风险,涵盖自然风险如洪水、地震,技术风险如施工工艺难题,以及经济风险如材料价格波动等。对识别出的风险进行分类整理,形成风险清单。风险评估环节,分析各风险发生的可能性及可能造成的影响程度,确定风险等级。针对不同等级的风险,制定差异化的应对策略。对于高风险事件,采取规避或减轻措施,如优化施工方案以降低技术风险,购买工程保险转移自然灾害风险;对于中低风险事件,制定应急预案,明确应急处理流程与责任分工。在项目实施过程中,持续监控风险变化情况,及时调整风险管控策略,确保工程建设风险始

终处于可控范围。

4 水利水电工程建设项目管理创新方法

4.1 数字化协同管理方法

构建水利水电工程数字化协同管理体系, 需搭建统 一信息平台。将项目各参与方纳入平台管理, 建立标准 化数据交互规则。在设计阶段,采用参数化建模方式, 使设计人员能够实时更新模型信息并同步至各关联方。 例如,结构设计变更时,设备选型、施工工艺等相关模 块自动触发数据更新,避免信息传递滞后导致的设计冲 突。建立动态进度协同机制,运用网络计划技术优化施 工工序。将关键线路上的任务设置为协同节点,各参建 单位围绕节点目标同步推进工作。通过平台共享施工进 度数据,实时生成进度偏差分析报告。当发现进度滞后 时,系统自动匹配可优化资源,如调配闲置设备、调整 人力安排,制定针对性纠偏方案,确保工程整体进度可 控。针对复杂交叉作业场景,利用平台的虚拟仿真功 能,提前模拟施工过程,预判潜在冲突点,优化施工顺 序,减少现场协调成本。设置电子签章与审批流程,使 图纸审核、方案确认等工作在线上快速完成,缩短决策 周期。

4.2 智能化决策管理方法

搭建水利水电工程智能决策系统,整合多源数据进 行深度分析。利用机器学习算法对历史工程数据、实时 监测数据及外部环境数据进行处理,建立风险预测模 型。针对洪水、地质灾害等自然风险,系统根据气象、 地质监测数据,提前模拟灾害发生概率及影响范围,生 成风险预警信息。结合施工进度与成本数据,分析技术 方案可行性, 为施工方案优化提供决策依据。开发智能 成本管控模块,构建动态成本预测模型[4]。该模型依据市 场价格波动趋势、施工进度消耗数据,实时预测工程成 本变化。当预测成本接近预算阈值时,系统自动分析超 支原因,推荐成本优化策略,如调整材料采购计划、优 化施工工艺,辅助管理人员快速决策,实现成本精细化 管理。进一步引入物联网技术,通过在施工现场布置智 能传感器,实时采集设备运行状态、材料消耗等数据, 为成本预测模型提供更精准的基础数据。在安全管理方 面,利用图像识别技术对监控视频进行分析,自动识别 未佩戴安全装备、违规操作等行为,及时发出警报并推 送整改通知,降低安全事故发生几率。

4.3 全生命周期信息集成管理方法

实施水利水电工程全生命周期信息集成,以BIM模 型为载体贯穿项目各阶段。在规划设计阶段,将地形地 貌、水文地质等基础数据融入BIM模型,形成三维可视 化设计成果。施工阶段,关联施工进度、质量验收等数 据,使模型能够动态反映工程建设状态。竣工后,完整 保留工程设计、施工、检测等信息,为后续运营维护提 供数据支撑。建立信息追溯机制,通过唯一编码标识工 程各构件与设备。管理人员可通过编码快速查询对应构 件的设计参数、生产厂家、安装时间等信息,实现质 量问题可追溯。利用模型模拟设施老化、设备故障等场 景,制定针对性维护计划,提高运营管理效率,延长工 程使用寿命。在项目移交阶段,利用区块链技术对工程 资料进行加密存储与共享,确保信息的真实性与不可篡 改性。运营期间,将实时监测数据与BIM模型结合,通过 数字孪生技术构建虚拟工程系统,模拟不同工况下工程 结构的响应, 为维修加固、设备升级提供科学依据, 实 现从建设到运营的无缝衔接与高效管理。

结束语

水利水电工程建设项目管理涉及多个环节和要素,需综合运用多种方法。从前期规划到实施阶段,再到关键要素把控,每一步都关乎工程成败。而数字化协同、智能化决策、全生命周期信息集成管理等创新方法的应用,为项目管理注入了新活力。未来,应持续探索和完善管理方法,以适应不断变化的建设需求,推动水利水电工程建设事业迈向新台阶。

参考文献

- [1]赵伟丽.绩效管理的水利水电工程建设项目管理研究[J].数字化用户,2024(52):197-198.
- [2]高菲菲.水利水电工程施工项目的进度管理方法研究[J].电脑采购,2023(41):170-172.
- [3]李璐.水利工程建设项目管理方法与实践[J].建筑工程技术与设计,2024,12(19):154-156.
- [4]李家平,屠新红.水利水电工程建筑的施工技术与管理策略研究[J].价值工程,2025,44(7):59-62.