绿色化工技术在化学工程与工艺中的运用

王艳霞 童志伟 浙江圣安化工股份有限公司 浙江 衢州 324012

摘要:化工行业的属性决定了其对环境有较大的影响,近年来,绿色化工技术得到了较好的发展,人们应该加强对绿色化工技术的研究和利用,不断改善化工行业的环境污染问题。绿色化工技术是化学工程与工艺未来发展的重要方向,对推进我国化工行业的升级优化与转型有着重要的意义,是实现可持续发展战略的重要途径。

关键词: 化学工程; 绿色技术; 工艺运用

引言

绿色环保化学技术,在化学工业领域中是一种崭新的技术概念,与当前时代的可持续发展相适应。把对环境友好的传统化学工艺技术运用到化学工业制造过程中,就能够降低对传统化学工艺技术所造成的环境污染与经济损失,并提供全新的替代燃料。而这种绿色环境能源运用在化学反应中,特性更为突出,反应条件也更为温和,不但创造了环境生态价值与社会效益,还创造了经济效益。但绿色化学工艺技术还有很大的发展领域与空间,仍有待进一步深入研究与探讨。

1 绿色化工技术的概述

化工行业以往的加工技术对环境造成了严重的破 坏,周边群众长期生活在有污染的环境中健康难以获得 保障,此外生态平衡又受到严重干扰,这种破坏是不可 逆的,不可忽视化工行业给自然环境造成的伤害,因此 深入研究绿色化工技术是非常有必要的。化工企业针对 这种污染问题,在日常生产过程中必须大力引进绿色化 工技术,该技术有利于降低污染,缓解对环境造成的影 响,此外,采用该技术还可以实现工艺的优化,加强生 产质量的同时又保护了环境, 以此确保自身实现长远的 良性发展[1]。可是由于该技术发展的不够成熟,在实践 运用过程中不可避免地出现不足之处。例如该技术的设 计环节, 因为其侧向干降低工业污染程度, 为了实现这 一目标就必须减少能源消耗, 所以在对此进行设计的过 程中就会延长生产时间,严重时还会对产品质量形成制 约。因此,需要结合化工企业现状,对当地的环境状况 等进行充分了解的基础上合理引用该技术,最大限度地 减少化工废物,避免产生污染问题的同时确保产品质 量,确保资源得到充分利用。此外还要制定科学的成本 管理机制,减少成本投入,以实现效益最大化。还有一 些化工原料,有害物含量相对较低,运用该技术进行适 当处理之后还能够进行二次利用,有利于节约成本,对 推动企业长远发展具有重要意义。

2 绿色化工技术在化学工程与工艺中的应用价值

2.1 降低毒害产物的产生

绿色化工技术的特点、优势以及核心就是"绿 色",这种技术是对现有化学工程技术的改进和创新。 比如可以通过改进某个化学方程式来减少乃至消除那些 会产生毒害性产物的过程,从而减少化学工业生产废弃 物的产生,减少污染物的排放量,降低因化学工艺生产 而对自然环境产生的负面影响。化学工程与工艺离不开 各种化学反应, 而在产品生产过程中, 实际发生的化学 反应非常多,但并不是所有的化学反应都会产生有毒有 害的产物[2]。如果能够利用好绿色化工技术,那么不仅可 以降低对环境的污染,而且还可以降低企业生产成本。 无论是哪个企业, 其在发展过程中都必须要积极主动地 承担社会责任和义务。谈及化工企业,人们首先想到的 就是其对环境带来的负面影响。但绿色化工技术的产生 能够使群众改变对化工企业的看法。在石油化工领域, 经常会采用烃类选择性氧化物,但因为这种烃类选择性 氧化物化学反应很容易产生氧化, 所以其化学反应产物 往往会对环境造成污染。所以,这就要求化工企业要深 化化学反应选择性,利用绿色化工技术有效预防出现损 害生成物的反应,这样才能使化学工业进行绿色生产, 大大降低对环境污染的危害。

2.2 降低化工企业生产成本

为了积极响应国家生态文明建设以及可持续发展的号召,很多化工企业逐渐转变了发展观念,在绿色化工技术创新研发工作中投入了越来越多的资源,不仅表现出企业对保护自然环境的决心和信心,更是为提高化学工程与工艺生产效率奠定了坚实的基础。与此同时,绿色化工技术还明显提高了对化学反应原料的利用率,带动了中国化学工程与工艺不断朝着现代化、绿色生态化的方向健康发展^[3]。众所周知,我国正处于经济转型升级

的关键阶段,由于化工属于重污染、高投资的重工业领域,所以更是经济转型升级的重点和难点。在转型升级过程中,有很多化工企业面临破产、倒闭,但也有很多化工企业成功的转型升级,并迎来了一个非常难得的发展机遇。绿色化工技术是化工企业成功转型升级的"法宝",因为将这种技术应用到化学工程与工艺环节,不仅大大降低了企业环保压力,同时还降低了企业生产成本,从而使企业发展竞争力明显提升。

3 绿色化工技术在化学工程与工艺中的运用

3.1 清洁生产技术

清洁生产技术被广泛的应用于海水的淡化、废弃物 的处理、冶金等方面。清洁生产技术具有不会产生毒副 作用的优势, 因此对于环境的污染与破坏较小。海水 淡化可以采用清洁生产技术提取海水中的盐分与其他物 质,不仅能够将海水转换为生活用淡水,还能够提取海 水中的物质应用在其他方面。膜化学技术能够推进可再 生资源的转化,实现化工产品的有效输出。膜技术是清 洁生产技术的重要组成部分之一, 是一种通过利用具有 选择性分离功能的材料,将料液的不同组分进行分离、 纯化与浓缩的技术。其类似于过滤技术, 但是却能够达 到分子范围的分离。膜技术的应用,不涉及相的变化, 也不需要添加助剂,是一种高效的清洁生产技术[4]。它 被应用在各种类型的化工生产当中,不仅在海水淡化中 有所应用,在有色冶金、能源电力、给水工程、污水回 收、食品医药等方面也有着广泛的应用,是绿色化工技 术发展的重要推动力之一。

3.2 催化技术

作为化学反应工艺生产的技术基石,催化剂可以帮 助将许多理想的化学反应生产工艺转化成现实的工业生 产使用。相对于传统的工业催化剂技术来说,现今的 化学催化剂技术通过选择更加绿色环保的提炼方式,不 但降低了成本,也增加了原材料利用率,而且还没有形 成过大规模的工业废弃物,从而对环境污染具有了一定 的防护效果。在生物催化剂技术中大量使用了固体催化 剂,例如杂多酸、分子筛催化剂等,从而替代了以往的 某些有害液体催化剂,在工业生产过程中也极大地降低 了工业废气、垃圾等的排放量。面对这样的状况,需要 进一步加强对无毒害化学催化剂的研究力度, 合理管控 好废水的排放量, 使之与国家有关规范和要求高度一 致,并着重注意对废水的循环利用,大幅提高了资源的 利用率。选用大孔径分子筛用作生物化学反应生成过程 中的主要催化剂, 在可移动或固态燃料中大量应用了催 化剂点燃法,在一定层面上,可对绿色生物友好型环境 的建立产生促进作用。

3.3 生物技术的应用

科学技术的进步和持续更新为现代生物技术研发工 作创造了前提条件, 并使生物技术可以更好地服务现实社 会。对一些微生物、酶以及细胞广泛应用生物技术,可以 最大限度地满足化学仿生学以及生物化工的具体要求。其 中,酶技术和膜化学的应用程度最高。借助现代生物技术 能有效促进资源循环利用,将废物转化成化学生产必需的 物质,提高化学物质的利用效率。生物酶技术可以发挥一 定的催化作用,是生物技术的重要内容[5]。生物酶技术可 以在化学物质内部产生非常好的催化效果, 其自身的转移 性以及高效性也非常明显, 可以为很多生物化工融合工作 创造良好的条件。膜化学技术也是化学仿生学中的重要组 成部分,这项技术可以在多种化学工程中使用。当前,在 绿色化工领域,对再生物质的多次利用以及使其变成化学 品的研究持续进行, 也是生物技术的重要体现。在采用绿 色化学工艺开展相关化学工程工作的过程中, 需要准备好 丙烯酰胺, 应尽量选择自然界中的酶来代替丙烯腈, 促进 丙烯酰胺催化融合,减少能源、资源消耗,有利于保护环 境。在应用生物技术中的酶时,主要提取动植物的有机化 合物,以往通常在煤炭以及石油中提取类似的物质,而提 取动植物的有机化合物能借助温和的反应, 对环境的污染 较小,产物性能也较好,对自然界中的酶加以有效利用, 可以更好地促进化学工业生产的顺利展开。

3.4 废弃物回收再利用

对于化工工业的生产和发展来说,化学反应有着一定的差异性,相关人员一定要切实观察具体的化学反应,并对化学反应的数据进行详细的记录,仔细观察废水中产生杂质的相关内容以及废气和残渣的数据资料,化工企业需要针对这些废弃的残值进行分类处理,并且进行仔细的分析与研究。许多废弃物是可以回收再利用的,回收利用之后不仅能够减少企业在生产过程中的经济投入,也能够减少生产对于环境所造成的破坏^[6]。化工企业应该响应国家的号召,严格按照节能损耗的绿色生产原则进行生产和发展,发展过程中所涉及一些价值较低的废弃物应该即时处理,尽可能降低生产过程中对于生态环境的破坏和影响。

4 结束语

综上所述,绿色化工技术的产生和发展不仅是我国 化学工程与工艺领域的重大突破,将绿色化工技术应用 在化学工程与工艺中,不仅可以优化化学原料选择环 节,降低毒害产物的产生;还可以降低化工企业生产成 本,为化工企业经济转型升级提供坚实的保障。提高化 学工艺的环保性有助于稳定社会的发展,改善社会大众的生活环境,为保护生态系统提供助力。作为众多行业发展中采用的重要工艺手段,化学工程对国家产业升级的贡献不言而喻,也是当前我国经济转型必须具备的前提条件。对绿色化工技术的现代化改进,能有效抑制化工行业对环境的污染,更好地实现保护环境与绿色技术的有效统一。

参考文献:

[1]吴荣鑫,郑子良,王传良,等.绿色化工技术与绿色化工设计的相关问题研究和工艺危害[J].山东化工,2021,50(18):3.

[2]王玮, 刘和敏, 张旭. 化工技术在化学工程与工艺中的应用[J]. 化工管理, 2021(16):165-166.

[3]郑启红.化学工程工艺中绿色化工技术的开发与应用[J].化工设计通讯, 2020, 46(8): 2.

[4]赵磊.绿色化工技术在化学工程工艺中的应用研究 [J].科技成果纵横,2020(3):1.

[5]董黛,曹家琪,魏菲宇,窦丹阳,秦玉嵘. 化学工程工艺中绿色化工技术的开发与应用[J]. 清洗世界,2020,36(11):118~119.

[6]毛娅. 绿色化工技术在化学工程工艺中的应用[J]. 中国石油和化工标准与质量,2021,41(15):189-190.