机电一体化技术在智能制造中的应用分析

廖本富 泸州市精维科技有限公司 四川 646000

摘 要:随着当前我国经济的全面发展和科学技术的日新月异,各项先进的信息技术广泛地应用至各个不同的行业之中,为其行业带来了全新的发展机遇。其中,机电一体化技术作为当前时代发展的科技产物,灵活的将机电一体化与智能制造工作两者进行有机结合,不仅可以进一步的增强制造工作的效率与水平,并且通过全局优化的方式,可以从根本上摒弃早期制造阶段,所潜在的各项问题,助推智能制造工作向系统化、科学化、先进化迈步。

关键词: 机电一体化技术;智能制造;具体应用;对策分析

引言:智能制造工作将现代先进的计算机作为辅助工具,按照实际的工作要求,开展一系列的信息模拟、分析、汇总工作,促进制造业智能信息的继承与发展。在开展智能制造工作时,需要相关的管理人员结合个人的工作经验,有针对性的融入机电一体化技术。以此实现制造工作的高度柔性化、集成化、秩序化发展,最大限度的提高智能制造工作的生产效率。而本文主要结合当前智能制造工作的发展状况,对如何将其与机电一体化技术进行有机串联,这一根本问题,展开多层次的分析与讨论。

1 机电一体化技术的基本概述

机电一体化技术主要是为电气和机械系统工程发展 提供服务,集中性的涵盖了机器人技术、电子信息技术、计算机技术、系统技术、控制技术等多项不同的内容,并且其各个子系统都得到了全面的发展,彻底的突破了原有工作模式的限制。通过多种不同的控制方式,实现机电一体化模块执行生产目标的统一化。在此阶段,专业的管理人员可以因时而变地结合工作的变化特征,加强对生产方案的调整,以此最有力的展现出机械制造工作的属性,不断的增强机电一体化技术的运用力度。不仅可以有效的提高现代生产工作的效率,并且可以加快当前产品更新换代的频率,从根本上破除了资源能源短缺的困境。以具体问题具体分析的工作思路,将机械技术、微电子技术与信息技术进行有机结合,实现机电系统的最优化,促进机械产品的转型升级,提高机电制造加工工作的精度,改变传统机电产品单技术和单

作者简介:廖本富,1965年10月,男,汉族,四川 泸州人,现任泸州市精维科技有限公司技术主管。研究 方向:机电一体化 功能的局限性。实现多种技术与功能集为一体的工作目标,更有效的适应当前市场的发展需求,满足用户群体的使用诉求。

2 智能制造的基本概述

智能制造主要是由智能制造技术与智能制造系统组 合而成,其在实际工作阶段不仅能够充实数据库,并且 该系统本身具有着自学习功能。可以有效的搜寻各项 不同的信息资源, 并根据系统设定, 对信息进行分析判 断,以此有效的规划后期制造工作的目标。从某种程度 上讲,智能制造已经逐步扩大并延伸人类的脑力劳动, 逐步在早期制造自动化的基础之上进行更新与完善,向 制造柔性化、智能化、系统化的方向靠近。采用自动化 监测、报警、诊断的方式,避免由于工作难度系数过 大, 而影响工作人员人身安全的现象层出不穷。最大限 度的提高了制造设备的安全性、可靠性、有效性, 初步 改善了设备的操作性能, 优化了智能制造工作的流程。 源源不断的增强智能制造技术的运用力度,不仅可以充 分调动制造企业的工作积极性,并且能够促进工业向中 高端方向迈进,以此有效的满足建设制造强国的工作目 标,赢得全新的国际竞争优势。最后,智能制造技术本 身的工作优势,可以进一步的减少数控程序的准备时 间。避免了由于人为原因,所带来的工作失误,实现智 能制造工作的集中化建设。

3 机电一体化技术在智能制造中的核心运用

3.1 在数控领域的具体运用

智能制造技术在为当前国家发展带来源源不断的经济效益的同时,逐步推动着国家工农业的工作健全。在早期,相关的工作人员均是采用手工操作的方式,完成制造任务,工作难度系数较高,且工序繁琐,不仅会

严重的降低最终的工作效率,并且会加大制造工作者的 工作压力。针对此类问题的层出不穷,可以巧妙的将机 电一体化技术融入至数控领域,运用电脑数字化控制的 方式,确保数控机床能够按照技术人员事先编定好的程 序,自动化的开展零部件加工和制造工作。需要相关的 工作人员结合实际的工作需求,对零件的加工工艺路 线、工艺参数、刀具运动轨迹、切削参数、位移量等多 项不同的数值进行筛选,严格的按照数控机床规定的指 令代码,将其编写成加工程序单。并以层层递进的工作 方式,将反复勘查的数据输入到数控机床的装置中,以 智能化的工作方式, 指挥机床开展加工零件工作。广泛 的采用先进的机电一体化技术,不仅可以进一步的提高 智能制造能力和水平, 并且可以增强制造企业对市场的 适应能力,彰显其核心竞争力。最后,通过引用总主线 模式的数控机床结构,对制造工作状况进行全方位的监 督,通过实时录像的方式,更直观的呈现在管理人员面 前。不断的缩短智能制造生产周期,制造高速、高精、 高水平的加工设备,增强制造构件的强度、高度、可靠 性。追求加工效率和加工质量的智能化,提高驱动性 能,彻底的解决数控系统封闭性的不良问题,令数控机 床加工向网络化的方向发展。

3.2 在机器人领域的具体运用

机器人作为可以自主或全自主工作的智能机器,在 开展智能制造工作时,不仅可以有效的发挥出其所具有 的感知、决策、执行功能,并且可以逐步替代工作人 员完成危险且复杂的劳动,最大限度的延伸人的活动和 能力范围。将机电一体化技术与机器人技术进行有机结 合,可以引导机器人按照既定的工作程序,有目标的完 成智能制造工作,融入自动化的工作指令,使机器人可 以自主性的识别外界环境,通过编程和自动控制,执行 各种不同的作业内容。机器人技术不仅可以接受人类的 指挥,并且以持续性的运行方式,提前编排好程序。需 要当代的工作人员将人工智能技术作为工作开展的主要 纲领,协助人类开展智能制造工作,保证机器人能够快 速的适应环境的变化,并控制其自身的行动。

3.3 在自动生产线中的具体运用

将自动化机械体系作为工作开展的主要基础,不断 的运用机电一体化技术,进而实现产品工艺过程的自动 化生产,严格的按照机械性的工作指令,将加工对象自 动化的传送至不同的机床上,并有针对性的完成加工装 卸检验工作。在此阶段,相关的工作人员只需要对自动 生产工作阶段的工作状况进行监控即可,通过调整、监 督、管理生产线的工作方法,保证生产过程的高度连续 性。采用机电一体化的自动化生产方式,保证产品设计 和制造工艺的先进性、稳定性、可靠性, 广泛的普及自 动化的生产线,增强制造工作的劳动生产率。并在原有 的工作基础上提高产品的质量,改善劳动条件,进一步 的缩减智能制造生产工作的占地面积, 保证制造工作的 均衡性, 以此显著的增强实际的工作效益。除此之外, 采用自动化生产线的工作方式,可以确保在无人干预的 情况下,统一化的完成智能制造任务,以快、准、狠的 工作模式,扩展工作人员的器官功能。不断的增强当代 社会群体认识世界、改造世界、创造机会的能力。分别 对自动生产线的传送系统,控制系统引起重视,以此提 高自动生产线的制造效率,保证自动线工作的可靠性。 在缩减劳动时间的同时,减少智能制造工作期间所消耗 的资金成本,实现提高智能制造工作生产率的根本目 标,有效的适应多品种生产工作的需求。

3.4 在工程建设中的具体运用

经数据调研, 我国许多建筑工程在对内部的照明系 统进行设计时,均选择采用计算机控制技术和机电一体 化技术, 共同完成工作任务。为了能够进一步的增强 照明系统的利用率,并降低其在照明阶段所消耗的能源 资源。相关的工作人员必须要积极的转变自身的设计思 路,以不同的时间段作为界限,利用电子感应技术,对 供电进行实时的监督与跟踪,并进一步的改善电路照明 中不平衡负荷所带来的额外功耗。在提高功率因素同 时, 达到优化供电的设计目的。进一步的延长照明系统 的使用寿命,确保其在各种不同的电网环境下,都能够 连续稳定地工作。最后,利用各种不同的传感器或遥控 器。同样可以达到对灯光自动控制的工作目的,工作人 员可以预先设置不同的工作情景,根据不同时段的光照 状况,对灯光进行切换,使灯光柔和变化,采用智能调 光控制系统和移动亮度传感器,确保传感器会根据感应 信号,调整灯具的亮度,直到达到预先设定的光照度值 为止,可节省大量的灯泡,以此减少工作人员更换灯泡 的工作量。除此之外,还可以对工程建筑内部的空调进 行自动化的控制。以室外气候条件合适和室内负荷变化 为工作依据,通过对空气状态参数的自动检测和调节, 保持空调系统处于最优化的工作状态,以此有效的保证 空调的恒温和净化。选择直接采用计算机技术实现空调 控制的方法, 可以保证室内空间的舒适性, 进而为当代 社会群体提供更为优质的服务体验。

4 结束语

在当前全新的经济发展形势之下,加强对机电一体 化技术与智能制造工作的研究与分析,所呈现出的实质 性作用毋庸置疑。相关的工作人员作为整个问题优化 的主力军,必须要深刻的明确自身的责任之重,放远发 展眼光。从全局的发展角度,对机电一体化技术的核心 优势加以分析,并——探讨其在智能制造中的运用。在 为制造行业带来经济效益的同时,为当前国家的繁荣发 展、秩序发展、长久发展,带来不可多得的社会效益。

参考文献:

[1]张馨仁.机电一体化技术在智能制造中的应用分析 [J].山东工业技术,2017:146-146.

[2]秦立峰.机电一体化技术在智能制造中的应用分析 [J].引文版:工程技术,2016:272.

[3]朱博.智能制造中机电一体化技术的应用分析[J].南方农机,2019:136.