铝合金加工裂纹形成原因及解决措施

徐晨光

东北轻合金有限责任公司 黑龙江 哈尔滨 150060

摘要:本文剖析铝合金加工裂纹成因并提出解决措施。阐述铝合金物理化学性质及加工性能影响因素,指出材料成分、内部缺陷,工艺温度、速度、冷却方式,应力作用,环境温湿度与气体等均为裂纹诱因。针对性提出优化材料选择预处理、改进加工工艺、强化应力管理、控制环境等措施,为提升铝合金加工质量提供参考。

关键词: 铝合金; 加工裂纹; 形成原因; 解决措施

引言:铝合金因其密度低、强度高、耐腐蚀等优良性能,在航空航天、交通运输和电子设备等领域广泛应用。然而,在加工过程中常出现裂纹问题,严重影响产品性能与使用安全。裂纹的产生涉及材料特性、工艺控制、应力状态及环境条件等多个因素,机理复杂。深入分析裂纹成因,并采取针对性的预防措施,对提升铝合金加工质量、延长产品使用寿命具有重要意义。

1 铝合金的基本特性

1.1 铝合金的物理与化学性质概述

铝合金是以铝为基的合金总称, 其物理性质独特。 密度方面,相较于钢铁材料,铝合金密度较低,这一特 性使其在航空航天、交通运输等对减重有需求的领域备 受青睐。在熔点表现上,铝合金熔点随合金元素种类与 含量变化而改变,不同类型铝合金熔点存在差异,这种 特性影响着铸造等加工工艺的温度控制。铝合金的导热 与导电性能同样突出。良好的导热性使其在电子设备散 热领域广泛应用,能够快速传导热量,保证设备稳定运 行。导电性能虽不及纯铜,但在满足电气性能要求的同 时,凭借密度优势,在电力传输等领域可作为铜的替代 材料。铝合金具有一定的强度与韧性,通过调整合金成 分和热处理工艺,可显著提升其强度,使其既能承受一 定载荷,又具备抵抗变形与断裂的能力。化学性质上, 铝在空气中易与氧气发生反应,表面迅速形成一层致密 的氧化铝薄膜。这层薄膜隔绝了内部铝与空气的接触, 有效防止进一步氧化, 赋予铝合金良好的耐腐蚀性能。 然而, 在特定化学环境中, 如接触强酸碱物质, 氧化铝 薄膜可能被破坏, 铝合金的耐腐蚀能力随之下降, 甚至 发生严重腐蚀, 在特殊使用场景需采取防护措施。

1.2 影响铝合金加工性能的关键因素介绍

合金成分是影响铝合金加工性能的核心因素。不同 合金元素加入铝基体后,会与铝发生各种物理化学反 应,改变铝合金的组织结构与性能^[1]。例如,铜元素的加 入可显著提高铝合金强度与硬度, 但会降低其塑性, 在 锻造等塑性加工过程中,含铜量高的铝合金变形难度增 加。硅元素能改善铝合金的铸造性能,降低熔点,提高 流动性, 使铝合金在铸造过程中更易填充模具型腔, 减 少铸造缺陷。热处理工艺对铝合金加工性能影响深远。 通过退火处理, 可消除铝合金加工过程中产生的内应 力,降低硬度,提高塑性,改善切削加工性能,便于后 续机械加工。淬火与时效处理则能显著提升铝合金强度 与硬度,不过过度时效会导致合金韧性下降,在后续加 工中易出现裂纹等缺陷。合理选择热处理工艺参数,精 确控制加热温度、保温时间和冷却速度,对保证铝合金 加工性能至关重要。加工方式同样会影响铝合金加工性 能。在铸造加工中,浇铸温度、模具温度和冷却速度决 定了铝合金的凝固过程与组织形态。浇铸温度过高,合 金液吸气量增加,易产生气孔缺陷;冷却速度过快,可 能导致铸件内部产生较大热应力,引发裂纹。塑性加工 时,变形量、变形速度和变形温度相互关联,变形量过 大或变形速度过快, 铝合金内部会产生大量位错堆积, 形成应力集中,降低加工性能,甚至造成加工件开裂。

2 铝合金加工裂纹形成的原因分析

2.1 材料方面

合金成分是影响铝合金加工性能的关键因素。不同 合金元素添加量改变金属晶格结构,直接影响材料塑性 与韧性。铜元素强化铝合金的同时,会降低高温下的抗 裂性,因为铜在晶界处偏析形成低熔点相,削弱晶界结 合力。镁元素能提高合金强度,但过量会形成脆性金属 间化合物,在加工变形时成为裂纹萌生的核心。锌元素 添加虽能提升强度,却会增加应力腐蚀敏感性,使材料 在加工过程中更易出现裂纹。材料内部存在的气孔、夹 杂物等缺陷,同样对裂纹形成产生作用。气孔在加工过 程中会因受力而变形,其尖锐边缘产生应力集中现象, 当应力超过材料强度极限,就会引发裂纹。夹杂物与基 体材料的物理性能差异大,在加工变形时两者变形不协调,导致夹杂物与基体间出现微裂纹。这些微裂纹在后续加工过程中不断扩展,最终形成宏观裂纹。

2.2 工艺条件

加工温度对铝合金加工过程影响显著。温度过高 时,铝合金晶粒会迅速长大,导致材料强度和塑性下 降,加工过程中易出现开裂现象。高温还会使铝合金表 面氧化加剧,形成疏松氧化膜,这层膜在加工时会破裂 卷入金属内部,成为裂纹源。而温度过低,铝合金塑性 降低,变形抗力增大,加工过程中产生的变形热不足以 软化材料, 使得材料内部应力急剧增加, 当应力超过材 料强度,裂纹随即产生。不合适的加工速率也会引发诸 多问题。加工速度过快,铝合金内部产生的变形热来不 及散发,导致局部温度升高,材料组织发生变化,强度 降低。高速加工时材料变形不均匀,产生较大的附加应 力,促使裂纹萌生。加工速度过慢,生产效率大幅降 低, 且长时间的机械作用会使材料内部产生疲劳损伤, 累积到一定程度便会形成裂纹。冷却方式不同,给铝合 金加工带来的挑战也不同[2]。快速冷却时,铝合金内部会 产生较大的热应力。因为表层与心部冷却速度差异大, 收缩不一致, 当热应力超过材料的屈服强度, 就会产生 塑性变形, 若应力持续增加超过抗拉强度, 裂纹就会形 成。缓慢冷却虽能减少热应力,但可能导致第二相在晶 界处析出和长大,降低晶界强度,在后续加工过程中, 晶界处易产生裂纹。

2.3 应力作用

残余应力的产生源于铝合金加工过程中的不均匀变形。在加工过程中,材料各部分变形程度不同,相互约束产生内应力,加工结束后这些应力残留在材料内部。残余应力处于不稳定状态,会自发地寻求释放。当残余应力超过材料的临界应力值,就会引发裂纹。特别是当残余拉应力与加工过程中产生的应力叠加,使局部应力水平显著提高,大大增加裂纹形成的可能性。外部载荷与内部应力共同作用,推动裂纹扩展。外部载荷施加在含有初始微裂纹的铝合金材料上,会使裂纹尖端的应力集中程度加剧。内部应力则为裂纹扩展提供持续驱动力,两者相互配合,使裂纹不断向材料内部延伸。在循环载荷作用下,裂纹尖端反复张开和闭合,导致材料发生疲劳损伤,加速裂纹扩展速度,最终使材料失效。

2.4 环境因素

环境湿度和温度变化对铝合金加工存在影响。湿度 较高时,铝合金表面易吸附水分,形成水膜。在加工过 程中,水膜会渗入材料表面的微小裂纹中,与铝合金 发生化学反应,促进裂纹扩展。温度变化会使铝合金产生热胀冷缩,若加工环境温度波动频繁,材料内部会产生热应力。热应力与加工应力叠加,增加裂纹形成的风险。空气中氧含量及其他气体对铝合金表面氧化层有影响。氧含量高时,铝合金表面迅速形成氧化膜。这层氧化膜若生长不均匀,会在膜内产生应力,导致氧化膜破裂。破裂的氧化膜碎片在加工过程中会进入材料内部,成为裂纹源。其他气体如二氧化硫、氯气等,会与铝合金发生化学反应,降低材料表面质量,削弱材料性能,使铝合金在加工过程中更容易出现裂纹。

3 防止铝合金加工裂纹的解决措施

3.1 优化材料选择与预处理

根据加工需求选择合适牌号的铝合金材料是预防裂 纹的首要环节。不同牌号的铝合金, 其合金成分、力学 性能和加工特性存在显著差异。例如,对于需要进行复 杂塑性变形的加工工艺,如锻造、轧制,应优先选择塑 性良好的铝合金牌号,这类合金在变形过程中能更好地 适应外力作用,减少应力集中导致的裂纹风险。而用于 铸造的铝合金,则需注重其流动性和收缩率,选择流动 性佳、收缩率小的牌号,以保证铸件的成型质量,降低 缩孔、裂纹等铸造缺陷产生的可能性。对原材料进行适 当的预处理可有效减少内部缺陷[3]。熔炼过程中,严格控 制合金元素的添加顺序和比例,确保成分均匀,避免因 成分偏析产生局部性能差异。采用精炼工艺,通过向合 金液中加入精炼剂,去除其中的气体和夹杂物。精炼剂 与气体、夹杂物发生物理化学反应, 使其上浮至合金液 表面,进而被清除。除气处理同样关键,利用真空除气 或吹气除气等方法,降低合金液中的气体含量,防止气 孔等缺陷在后续加工中成为裂纹源。对原材料进行探伤检 测,运用超声探伤、X射线探伤等技术,提前发现内部存 在的缺陷,并剔除不合格材料,从源头上保障材料质量。

3.2 改进加工工艺

调整最佳加工温度范围并确保均匀加热,是防止裂纹的重要工艺改进措施。每种铝合金都有其适宜的加工温度区间,在此区间内,材料的塑性和变形抗力达到良好平衡。加工前,通过工艺试验确定具体铝合金的最佳加工温度范围。加热过程中,采用均匀加热方式,避免局部过热或过冷。可使用多区加热设备,对工件进行分区控温,使温度场分布均匀。在加热过程中设置适当的保温时间,确保材料内部温度一致,减少因温度不均产生的热应力。控制合理的加工速度能有效避免过度变形。加工速度过快易导致应变集中和热积累,过慢则会增加残余应力。根据铝合金的种类、加工工艺和设备能

力,制定合理的加工速度曲线。在加工初期,采用较低 的速度使材料逐渐适应变形, 随后根据材料的变形情况 和设备负载能力,逐步提高速度。实时监测加工过程中 的各项参数,如力、温度、位移等,根据参数变化动态 调整加工速度。当发现局部变形过大或温度异常升高 时,及时降低速度,防止裂纹产生。改进冷却方法,采 用渐进式冷却技术,可减少热应力。传统的快速冷却或 缓慢冷却都存在弊端,渐进式冷却结合两者优势。在冷 却初期,采用相对较快的冷却速度,使铝合金表层迅速 凝固,形成一定强度的外壳。随着冷却的进行,逐步 降低冷却速度, 使内部缓慢冷却, 减小表层与内部的 温差,降低热应力。可通过控制冷却介质的流量、温度 和喷射方式实现渐进式冷却。例如,在淬火冷却时,先 使用温度较低、流量较大的冷却液快速冷却,一段时间 后,降低冷却液温度和流量,实现缓慢冷却,有效避免 因冷却不当产生的裂纹。

3.3 应力管理

实施有效的应力释放措施,如热处理,可消除加工 过程中产生的残余应力。退火处理是常用的应力释放方 法,将铝合金加热至适当温度并保温一定时间,使材 料内部的位错重新排列, 晶格畸变得到恢复, 从而降低 残余应力。对于不同的加工工艺和铝合金类型, 选择合 适的退火工艺参数至关重要。固溶时效处理不仅能提高 铝合金的强度和硬度,还能在一定程度上调整内部应力 状态。通过精确控制固溶温度、时间和时效工艺, 使合 金在强化的同时,消除部分残余应力。在设计阶段考虑 结构优化以分散应力集中点,从根源上减少应力集中导 致的裂纹风险。避免设计尖角、缺口等容易产生应力集 中的结构,采用圆角过渡、平滑曲面等设计形式。合理 布置加强筋、凸台等结构,分散载荷分布,降低局部应 力[4]。通过有限元分析等手段,对设计结构进行应力模拟 分析, 预测可能出现应力集中的部位, 并对设计进行优 化调整。例如,在铝合金零件的受力关键部位,增加结 构厚度或改变结构形状, 使应力分布更加均匀, 减少裂 纹产生的可能性。

3.4 环境控制

维持适宜的工作环境条件,稳定加工参数,为铝合 金加工创造良好外部环境。严格控制加工车间的温度和 湿度,避免环境因素对铝合金性能产生不利影响。过 高的湿度会加速铝合金表面腐蚀, 而过低的温度可能降 低材料塑性。将环境温度控制在铝合金加工的适宜范围 内,湿度保持在较低水平,并通过温湿度调节设备实时 监控和调整。稳定加工过程中的各项参数,如压力、速 度、温度等,减少因参数波动导致的加工不稳定。采用 自动化加工设备和精确的控制系统,确保参数的稳定性 和一致性。使用保护气体或涂层来隔离有害环境因素。 在加工过程中,向加工区域通入保护气体,如氩气、氮 气等,形成保护气膜,隔绝空气中的氧气、水分和其他 腐蚀性气体与铝合金表面的接触, 防止表面氧化和腐 蚀。对于一些对表面质量要求较高的加工工艺,如焊 接、热处理,保护气体的使用尤为重要。在铝合金表面 涂覆防护涂层,如有机涂层、无机涂层,也能有效隔离 有害环境因素。涂层不仅能防止表面腐蚀,还能在一定 程度上减少加工过程中的摩擦,降低表面损伤和裂纹产 生的风险。

结束语

铝合金加工裂纹的形成是多种因素综合作用的结果,必须从材料、工艺、应力和环境四个方面系统应对。通过优化材料选择、改进加工参数、实施应力释放和控制环境条件,能够有效抑制裂纹的产生。未来应进一步加强对铝合金加工过程的动态监测与智能调控,推动加工技术向精细化、高效化方向发展,全面提升铝合金产品的可靠性与安全性。

参考文献

[1]朱黎原.铝合金焊接裂纹产生的原因和预防措施[J]. 中国金属通报,2022,(07):92-94.

[2]杜亮, 闫福旭.铝合金焊接常见缺陷及预防措施研究[J].中国金属通报, 2021 (7): 71-72.

[3]么天元.铝合金部件焊接接头裂纹分析[J].金属加工(热加工),2022,(05):72-74.

[4]李大洋,熊俊良.铝合金电镀金鼓包原因分析及解决措施[J].电镀与精饰,2024,46(7):111-115.