露天煤矿卡车运输安全风险识别与预警机制构建

赵旭

国能准能集团黑岱沟露天煤矿 内蒙古 鄂尔多斯 010300

摘 要:本文探讨了露天煤矿卡车运输系统的安全风险识别与预警机制构建,介绍了露天煤矿卡车运输系统的构成与运作流程,分析了人为、车辆、环境和管理四大安全风险来源。提出基于经验、数据分析和模型的多种风险识别方法,构建一套完整的预警机制,包括预警指标体系、预警阈值设定以及预警信息发布与处理流程,旨在提高露天煤矿卡车运输的安全性,减少事故发生。

关键词:露天煤矿;卡车运输;安全风险识别;预警机制

1 露天煤矿卡车运输系统的构成与运作流程

1.1 露天煤矿卡车运输系统的构成

露天煤矿卡车运输系统主要由运输车辆、运输道路、装载点和卸载点等要素组成。运输车辆通常为大型矿用自卸卡车,具有载重量大、动力强劲等特点,以适应露天煤矿高强度的运输需求。运输道路根据露天煤矿的地形和开采布局进行规划建设,包括主干道、支路等,其路况对运输安全有着重要影响。装载点一般设置在采掘工作面附近,用于将采出的煤炭装入卡车;卸载点则位于排土场或选煤厂等地,用于卸载煤炭或其他物料。

1.2 露天煤矿卡车运输系统的运作流程

露天煤矿卡车运输系统的运作流程通常为:卡车在 装载点等待装载煤炭或其他物料,装载完成后,按照规 定的运输路线驶向卸载点。在运输过程中,驾驶员需根 据路况、天气等因素合理控制车速,确保行车安全^[1]。到 达卸载点后,卡车进行卸载作业,卸载完成后空车返回 装载点,开始下一轮运输循环。整个运输过程需要与采 装、排土等其他作业环节紧密配合,以保证露天煤矿生 产的连续性和高效性。

2 露天煤矿卡车运输安全风险来源分析

2.1 人为因素

2.1.1 驾驶员疲劳

露天煤矿卡车运输作业强度大,工作时间长,驾驶员容易产生疲劳。疲劳驾驶会导致驾驶员反应迟钝、注意力不集中,增加发生交通事故的风险。例如,在长时间驾驶过程中,驾驶员可能会出现打瞌睡的情况,从而无法及时应对突发状况,导致车辆碰撞、侧翻等事故。

2.1.2 违规操作

部分驾驶员安全意识淡薄,存在违规操作行为。如 超速行驶、违规超车、不按规定路线行驶等。超速行驶 会使车辆的制动距离增加,遇到紧急情况时难以及时停车,容易引发追尾、碰撞等事故;违规超车则可能与其他车辆发生侧面碰撞,造成严重后果。

2.2 车辆因素

在露天煤矿卡车运输中,车辆因素构成重大安全风险。卡车长期在恶劣环境下作业,部件易磨损损坏,故障频发,如制动失灵、转向失控、发动机故障等。制动系统故障尤为致命,可能导致紧急情况下无法停车;转向故障则易引发交通事故。此外,维护保养不当也会加速部件磨损,降低车辆性能和可靠性,如刹车片未及时更换会减弱制动性能,增加事故风险。

2.3 环境因素

露天煤矿的运输道路路况极为复杂,伴随着大坡度、急弯道以及路面不平等问题,这些都对运输安全构成挑战。坡度大的路段可能导致车辆上坡动力不足或下坡制动困难,易发生事故;急弯道则易影响驾驶员视线,增加碰撞风险。此外,恶劣的天气条件,如暴雨导致路面湿滑、暴雪形成积雪结冰、大风使车辆行驶不稳、沙尘降低能见度等,都会显著影响车辆的制动、操控和行驶稳定性,大幅增加交通事故的风险,对露天煤矿卡车运输安全构成严重威胁^[2]。

2.4 管理因素

管理因素在露天煤矿卡车运输安全中扮演关键角色。调度不合理会导致运输效率低下并增加安全风险,如车辆调度过于集中引发道路拥堵,安全距离难以保证,易发生追尾事故;而调度不及时则使车辆长时间等待,驾驶员易急躁,违规操作风险上升。此外,安全监管不到位也是重大隐患,若驾驶员培训不足,安全意识淡薄,操作技能不熟练,或对车辆日常检查和维护监督不力,将导致车辆带病运行,事故概率显著增加,严重影响露天煤矿卡车运输安全。

3 露天煤矿卡车运输安全风险识别方法

3.1 风险识别流程设计

风险识别流程是系统、全面地识别露天煤矿卡车运 输安全风险的重要保障。第一,要明确风险识别的目标 和范围,确定是对整个运输系统进行全面风险识别, 还是针对特定环节或区域进行识别。例如, 若近期矿区 内频繁发生车辆碰撞事故,则可将风险识别范围聚焦于 车辆行驶过程中的安全风险。第二,收集相关信息。信 息来源包括历史事故数据、车辆运行记录、设备维护档 案、驾驶员操作记录、矿区环境监测数据等。通过对这 些数据的整理和分析, 获取与安全风险相关的线索。例 如,分析历史事故数据可以了解事故发生的原因、类型 和频率,为风险识别提供参考。第三,运用合适的风险 识别方法对收集到的信息进行分析处理。根据不同的识 别方法,从人为、车辆、环境和管理等多个角度对潜在 风险进行识别和筛选。例如,采用故障树分析法可以从 车辆故障这一结果出发,逐步分析导致故障的各种原 因,从而识别出与车辆相关的安全风险。第四,对识别 出的风险进行评估和验证。评估风险的可能性和严重 性,判断风险的等级。同时,通过现场调研、专家咨询 等方式对识别出的风险进行验证,确保风险识别的准确 性和可靠性。

3.2 基于经验的风险识别方法

基于经验的风险识别方法是利用专家、管理人员和 驾驶员的丰富经验来识别安全风险。专家凭借其专业知 识和对行业的深入了解, 能够对露天煤矿卡车运输过 程中可能存在的风险进行全面、系统的分析。例如,安 全工程专家可以从系统安全的角度出发, 识别出运输系 统中存在的潜在安全隐患,如道路设计不合理、安全设 施不完善等问题。管理人员通过长期的现场管理经验, 熟悉运输作业的各个环节和人员操作情况, 能够发现驾 驶员的违规行为倾向、车辆的异常状况等风险因素。例 如,现场调度员在日常工作中可以观察到车辆的运行状 态和驾驶员的工作表现,及时发现车辆故障隐患和驾驶 员疲劳驾驶等问题。驾驶员作为运输作业的直接参与 者,对车辆的性能和行驶过程中的实际情况最为了解。 他们可以根据自身的驾驶经验, 识别出车辆存在的问 题,如制动性能下降、转向异常等,以及道路和环境变 化带来的安全风险,如路况变差、天气突变等。通过组 织专家、管理人员和驾驶员进行经验交流和讨论, 收集 各方的意见和建议, 能够有效地识别出露天煤矿卡车运 输中的安全风险。

3.3 基于数据分析的风险识别方法

基于数据分析的风险识别方法是通过对大量相关数 据的统计分析, 挖掘出潜在的安全风险。在露天煤矿卡 车运输中,可利用的数据包括车辆的运行数据,如车 速、油耗、行驶里程、发动机转速等;设备维护数据, 如维护时间、维护内容、更换部件等; 事故数据, 如事 故发生时间、地点、原因、类型等。通过对车辆运行数 据的分析,可以发现车辆的异常运行状态。例如,若某 辆卡车在一段时间内频繁出现超速行驶记录,或者油耗 异常升高,可能意味着驾驶员存在违规操作行为,或者 车辆存在故障隐患。对设备维护数据进行分析,能够了 解车辆部件的磨损和更换情况,预测部件的使用寿命, 提前识别出设备故障风险[3]。例如,如果某类轮胎的更换 周期明显缩短,可能是轮胎质量问题或车辆行驶路况不 佳导致,需要进一步检查和处理。利用事故数据进行统 计分析,可以找出事故发生的规律和趋势,识别出导致 事故发生的主要风险因素。例如,通过对历年事故数据 的分析发现,在雨季,因道路湿滑导致的车辆打滑、侧 翻事故发生率较高,从而识别出雨季道路湿滑是一个重 要的安全风险因素,需要采取相应的防范措施。

3.4 基于模型的风险识别方法

基于模型的风险识别方法是通过建立数学模型或逻 辑模型,模拟露天煤矿卡车运输系统的运行过程,识别 其中的安全风险。常见的模型包括故障树模型、事件树 模型、贝叶斯网络模型等。故障树模型以某一不希望发 生的事件(如车辆事故)为顶事件,通过分析导致顶事 件发生的各种直接和间接原因,构建出故障树。从故障 树中可以清晰地看到各风险因素之间的逻辑关系,识别 出导致事故发生的关键风险因素。例如,以卡车制动失 灵为顶事件,通过分析可以找出制动液泄漏、制动片磨 损过度、制动管路堵塞等导致制动失灵的原因, 从而识 别出与制动系统相关的安全风险;事件树模型则是从某 一初始事件(如车辆启动)出发,按照事件发展的逻辑 顺序,分析事件可能的发展过程和结果。通过事件树模 型,可以识别出不同事件发展路径下可能出现的安全风 险。例如,从车辆启动这一初始事件出发,分析车辆在 行驶过程中遇到不同路况、天气条件以及驾驶员操作情 况等因素时,可能出现的各种结果,从而识别出相应的 安全风险: 贝叶斯网络模型是一种基于概率推理的图形 化网络模型, 它能够综合考虑多个因素之间的相互关 系,通过概率计算来评估风险发生的可能性。在露天煤 矿卡车运输安全风险识别中, 贝叶斯网络模型可以将人 为、车辆、环境和管理等多个因素纳入模型,通过对各 因素之间的概率关系进行分析, 识别出高风险因素, 并

对风险发生的概率进行预测。

4 露天煤矿卡车运输安全风险预警机制构建

4.1 预警指标体系构建

预警指标体系是预警机制的核心,构建时需遵循科 学性、全面性、可操作性和动态性原则。从人为因素 看,驾驶员疲劳程度、违规操作次数、安全培训考核成 绩等可作为指标。疲劳程度可通过连续驾驶时间、生理 指标(如心率、血压等)监测衡量;违规操作次数借助 车辆行驶记录和现场监管记录统计。车辆因素方面,车 辆故障频率、关键部件磨损程度、维护保养周期等是重 要指标。故障频率通过设备维护记录和故障报修记录统 计,关键部件磨损程度依据定期检测和设备运行数据评 估。环境因素中,路况等级、天气状况、作业场地人员 和设备密度可作为指标。路况等级综合道路平整度、坡 度、损坏程度评定; 天气状况通过气象部门预报和现场 监测数据获取:作业场地人员和设备密度经实时监控和 统计分析得出。管理因素上,调度合理性指标、安全监 管覆盖率、安全培训合格率等可作为指标。调度合理性 指标通过车辆运行效率、等待时间、空驶率等数据评 估;安全监管覆盖率统计安全监管人员对运输作业的检 查频次和覆盖范围衡量;安全培训合格率根据员工安全 培训考核结果计算。这些指标综合运用,能全面、准确 反映露天煤矿卡车运输的安全风险状况[4]。

4.2 预警阈值设定

预警阈值是判断安全风险是否达到预警级别的关键标准,设定需综合考虑历史事故数据、行业标准和企业实际情况。人为因素指标,如驾驶员连续驾驶时间,可参考法规和行业标准设定阈值。一般连续驾驶4小时为疲劳驾驶临界值,可将连续驾驶3.5小时设为轻度预警阈值,4小时设为重度预警阈值。车辆因素指标,如轮胎磨损程度,根据轮胎使用寿命和安全标准设定阈值。当轮胎花纹深度接近规定最低限值时发出预警,如规定最低限值为1.6毫米,可将花纹深度磨损到2.0毫米设为轻度预警阈值,1.8毫米设为重度预警阈值。环境因素指标的阈值设定需结合当地气候条件和矿区实际。如大雾天气,能见度低于50米时安全风险增加,可将能见度50米设为重度预警阈值,100米设为轻度预警阈值。管理因素指标的阈值设定可根据企业管理目标和实际管理水平调整。如安全监管覆盖率,若企业目标为100%,可将覆盖率低

于80%设为轻度预警阈值,低于60%设为重度预警阈值。 合理设定预警阈值,能及时、准确发出预警信号,为采 取防范措施提供依据。

4.3 预警信息发布与处理流程

预警信息发布是预警机制发挥作用的重要环节。当 预警系统根据指标和阈值判断存在安全风险时, 应及 时、准确发布预警信息。发布方式可采用短信通知、语 音播报、现场显示屏显示等多种形式。不同级别预警信 息发布范围和频率不同,轻度预警信息仅通知相关驾驶 员和现场管理人员,提醒注意安全;重度预警信息向整 个矿区相关人员发布,引起高度重视。预警信息处理流 程应明确各部门和人员职责与工作程序。驾驶员收到预 警信息后,应立即采取防范措施,如降低车速、检查车 辆状况等。现场管理人员接到预警信息后,应加强对现 场监管, 纠正违规行为, 检查和维修存在安全隐患的车 辆。企业安全管理部门收到预警信息后,应组织人员评 估和分析风险,制定整改措施和应急预案,同时跟踪和 记录处理情况,总结经验教训,不断完善预警机制。通 过规范的预警信息发布与处理流程, 能确保预警机制有 效运行,最大限度降低露天煤矿卡车运输安全风险。

结束语

综上所述,露天煤矿卡车运输安全风险的识别与预 警机制的构建对于提升煤矿安全生产水平具有重要意 义。通过本文的研究,为露天煤矿卡车运输系统的安全 风险提供了系统性的识别方法,并构建了全面的预警机 制。希望这些研究成果能够为露天煤矿的安全管理提供 科学依据和实践指导,助力煤矿企业实现安全、高效的 生产目标。

参考文献

[1]金磊,杜勇志,李雪健,于洪洋,周志伟,李建刚,王永军.露天矿低碳型运输工艺的选择方法[J].露天采矿技术,2021,36(06):32-36.

[2]王宏伟.露天矿卡车运输安全保障系统的基本要素 [J].设备管理与维修,2020(20):53-54.

[3]张树河.露天煤矿汽车运输安全管理措施探讨[J].内蒙古煤炭经济,2023,(15):121-123.

[4]吴长龙.霍林河南露天煤矿运输安全的管理措施[J]. 露天采矿技术,2021,36(02):97-99+104.