基于电梯检测分析测量误差因素

胡栩侨 尹绍哲 王 锐 广东省特种设备检测研究院 广东 佛山 528200

摘 要:电梯检测中的测量误差受多种因素影响,直接关系到检测结果的准确性与电梯运行的安全性。从测量误差的基本概念出发,系统分析了电梯检测过程中误差的分类及其产生机理,并深入探讨了检测仪器、环境条件、操作行为以及电梯自身状态等因素对测量精度的影响。在此基础上,提出了相应的误差控制措施,包括加强仪器管理、优化检测环境、规范操作流程及把控电梯运行状态等。通过科学合理的误差控制手段,有助于提升电梯检测的整体质量与可靠性。

关键词: 电梯检测; 测量误差; 影响因素; 控制措施

引言:电梯作为现代建筑中不可或缺的垂直交通工具,其运行安全性至关重要。检测是保障电梯安全运行的重要手段,而测量误差的存在可能影响检测结果的准确性。测量误差并非偶然失误,而是由多种主客观因素共同作用形成的差异。理解测量误差的本质和类型,有助于识别检测过程中的关键影响因素。因此,有必要对电梯检测中可能出现的误差来源进行系统分析,并探索有效的控制策略,以提高检测数据的可靠性和电梯运行的安全水平。

1 电梯检测中测量误差的基本认知

1.1 测量误差的定义

测量误差是指电梯检测过程中, 测量结果与真实值 之间的差异,反映检测数据的准确程度。这种差异并非 检测过程中的错误, 而是多种因素共同作用下形成的客 观存在。真实值是电梯部件实际具备的参数, 如轿厢运 行速度的瞬时值、导轨的垂直度偏差等, 这些数值在理 想状态下可通过完美测量手段获取, 但实际操作中受各 种条件限制难以完全捕捉[1]。测量结果则是通过检测仪 器和方法得到的数值,可能因仪器精度、环境干扰等因 素与真实值产生偏离。差异的大小直接影响对电梯运行 状态的判断, 微小误差可能不会改变对电梯安全性的评 估,较大误差则可能掩盖潜在问题或误判设备状态。在 电梯关键参数检测中,如限速器动作速度、制动器制动 距离等, 误差的存在会模糊安全边界, 需通过技术手段 将其控制在可接受范围内。理解这种差异的本质有助于 在检测过程中更客观看待数据,既不忽视误差的影响, 也不将正常误差等同于检测失误, 为后续误差分析与控 制提供基础认知。

1.2 测量误差的分类

电梯检测中的测量误差可分为系统误差、随机误差

和粗大误差,不同类型误差的表现形式与产生机理存在 差异。系统误差是由固定因素引发的规律性偏差,在 相同条件下重复测量时会呈现一致的偏离方向和大致幅 度。检测仪器未经校准导致的零点偏移会使所有测量值 都偏高或偏低,检测方法本身的理论近似也可能带来持 续性偏差。这种误差不会随测量次数增加而消失,需通 过修正仪器、优化方法等方式消除或减弱。随机误差由 偶然因素引起,表现为测量结果在真实值附近无规律波 动。检测环境中温度的瞬间波动、仪器内部电子元件的 微小噪声,都可能导致同一参数的多次测量结果互不相 同。这些波动看似无章可循,但大量测量后会呈现正态 分布特征, 可通过增加测量次数取平均值的方式降低其 影响。粗大误差是超出正常范围的显著偏差,通常由突 发状况引发。检测人员操作失误导致仪器摆放位置错 误,或仪器突发故障产生异常读数,都可能产生此类误 差。这类误差与真实值偏差极大,明显脱离合理范围, 需通过数据审核识别并剔除,避免对检测结论造成误 导。三种误差在电梯检测中可能同时存在,区分其类型 有助于针对性采取控制措施,提升检测数据的可靠性。

2 电梯检测中测量误差的主要影响因素

2.1 检测仪器因素

仪器自身精度等级不足,无法满足电梯关键参数的测量要求。不同电梯参数对测量精度的要求存在差异,限速器动作速度的测量需要仪器捕捉细微的速度变化,而轿厢运行平稳性的检测则依赖仪器对微小振动的感知能力。若仪器精度等级偏低,难以分辨参数的细微波动,测量结果便会失去参考价值。仪器长期使用后出现磨损、老化,导致测量精度下降。机械测具的刻度磨损会使读数基准模糊,传感器的灵敏度会随使用时间增长逐渐衰退,无法精准捕捉原始信号。仪器内部的线路接

头氧化会增加电阻,导致信号传输过程中出现衰减或失真。仪器校准不当,基准值偏离标准状态。校准所依据的标准器具本身存在误差,会使仪器的基准设置出现偏差,校准操作过程中的步骤遗漏会导致校准不彻底,使仪器在特定测量区间的误差显著增大。仪器的附件不匹配也会引入误差,如连接线缆的阻抗与仪器不匹配会导致信号反射,影响测量数据的稳定性。仪器存放不当也会加剧误差,长期暴露在潮湿环境中会加速部件锈蚀,随意堆叠会使精密部件受外力变形。

2.2 检测环境因素

检测现场温度、湿度剧烈变化,影响仪器性能与测 量对象的物理特性。温度快速升高会使金属材质的仪器 部件膨胀,改变其原有的机械配合精度,温度骤降则 可能导致塑料部件收缩变形,影响仪器的结构稳定性。 湿度过高会使仪器内部的电路板受潮,降低绝缘性能, 甚至引发短路故障,湿度过低则会导致仪器表面产生静 电,干扰电子信号的正常传输。振动、噪声干扰,导致 测量仪器读数不稳定[2]。电梯运行时产生的周期性振动 会使仪器的传感器跟随振动,无法稳定对准测量点,非 周期性的冲击振动则可能使仪器内部的敏感元件暂时失 灵。高强度的噪声会对声学测量仪器产生干扰, 使其接 收的有效信号被淹没,导致测量值出现无规律波动。电 磁场干扰, 使电子类检测仪器的测量结果产生偏差。电 梯的变频调速系统运行时会产生高频电磁场,这些电磁 场会通过空间辐射或线路传导侵入检测仪器,干扰其内 部的信号处理电路, 使测量数据出现异常跳变。检测区 域的光照过强会影响光学仪器的读数清晰度, 光照过弱 则可能导致视觉疲劳引发读数误差。

2.3 检测操作因素

检测人员操作不规范,如仪器放置角度偏差、测量点选择不合理。仪器放置时与测量基准面不垂直,会使测量光线或声波的传播路径发生偏折,导致测量值偏大或偏小。测量点选择过于靠近部件边缘,会因边缘效应使参数出现异常,无法反映部件的整体状态。检测人员专业能力不足,对仪器功能掌握不熟练,读取数据时出现误判。对仪器的测量范围理解不清,在参数超出测量范围时仍继续使用,会得到毫无意义的数据。读取数据时未能准确识别仪器的最小分度值,会导致估读误差增大。检测流程执行不到位,省略关键测量步骤。测量前未对仪器进行预热,会因仪器未达到稳定工作状态而产生偏差,测量过程中未进行清零操作,会将前次测量的残留数据带入本次测量结果。操作过程中频繁触碰仪器的敏感部位,会干扰仪器的正常工作状态,导致测量数

据失真。测量时仪器电缆线过度弯曲会改变其电气性能,影响信号传输的完整性。

2.4 电梯自身状态等因素

电梯运行过程中存在的动态振动、晃动, 使测量点 位置发生瞬时变化。电梯启动时的加速度会使轿厢产生 前后晃动,运行过程中导轨的安装偏差会导致轿厢左右 摆动,这些动态变化会使测量点的空间位置不断移动, 传感器无法持续稳定地采集数据。电梯部件存在磨损、 变形等缺陷,导致测量基准不稳定。导轨表面的不均匀 磨损会使其形成波浪状起伏,作为测量基准时无法提供 平整的参考面, 轿厢壁的变形会使测量点的相对位置发 生改变,导致多次测量的基准不一致。电梯运行负载变 化,影响相关参数的测量结果。负载增加会使电梯的运 行阻力增大,导致运行速度的变化率发生改变,也会使 钢丝绳的拉伸量增加,影响轿厢的平层精度。电梯门机 系统的老化会使门的开关速度出现波动,导致与门相关 的参数测量结果不一致。电梯的电气接触点氧化会导致 接触电阻增大,使电气参数的测量值出现偏差。电梯的 导靴磨损不均会加剧运行时的振动,进一步增大测量点 的位置波动。

3 电梯检测中测量误差的控制措施

3.1 仪器管理措施

定期对检测仪器进行校准与维护,确保仪器处于正 常工作状态。校准需按照仪器使用说明规定的程序进 行,校准过程中需检查仪器的各项功能参数,对偏离标 准的部分进行调整。校准用的基准工具需符合更高精度 标准,校准完成后需进行验证测量,确认仪器读数准 确。维护工作应覆盖仪器的全部部件,清洁光学元件表 面的灰尘,避免光线折射偏差;紧固松动的机械连接, 防止测量时部件位移; 更换老化的电子元件, 确保信号 传输稳定,避免因部件损耗导致测量精度下降[3]。根据检 测项目的精度要求,选择适配的检测仪器。测量电梯微 小间隙时,应选用分辨率更高的仪器,确保能捕捉到微 米级的变化。检测高速运行参数时,需选用响应速度快 的仪器,避免因仪器反应滞后导致数据失真。对电梯限 速器动作速度的测量,需选用采样频率足够高的仪器, 才能准确记录瞬间速度变化。不同检测项目对仪器性能 的要求不同,为每个项目匹配最合适的仪器,可从源头 减少因仪器性能不足引发的测量误差。仪器使用前需检 查外观是否完好,连接线路是否牢固,确保无物理损伤 影响测量。

3.2 环境控制措施

检测前对现场环境进行评估,采取温控、减振、防

电磁干扰等措施。评估需记录现场温度、湿度、振动强 度及电磁场强度等数据,根据评估结果制定针对性控 制方案。温度波动较大时,可在检测区域设置临时温控 设备,维持环境温度稳定。对精密电子仪器,可配备恒 温箱存放,使用前提前取出适应环境温度。振动明显的 区域,可在仪器下方放置减振垫,减少外界振动对仪器 的影响。检测平台需稳固放置,避免自身晃动传递到仪 器。存在强电磁场干扰时,需为电子仪器加装屏蔽装 置,阻隔杂散电磁信号。仪器连接线需远离强电线路, 减少电磁感应影响。避开恶劣环境时段进行关键参数检 测。暴雨或大风天气可能导致建筑物振动加剧,影响电 梯运行稳定性,此时不宜进行关键参数检测。高温或低温 极值时段, 仪器性能容易出现波动, 应选择温度相对适宜 的时段开展检测工作。湿度超标的日子, 可暂缓对金属部 件尺寸的测量, 待湿度恢复正常后再进行, 避免因部件受 潮变形影响测量结果。雾霾天气可能影响光学仪器的测 量精度,需待空气洁净度提高后再使用光学设备。

3.3 操作规范措施

加强检测人员培训,提升操作技能与专业素养。培 训内容应包括仪器的工作原理、操作步骤及注意事项, 通过模拟操作让检测人员熟悉不同仪器的使用方法。 培训中需加入实际案例分析, 讲解操作不当导致误差的 具体表现,加深理解。针对常见的操作误区进行专项讲 解,如仪器放置角度对测量结果的影响,数据读取时的 正确观察方式,帮助检测人员形成规范的操作习惯。定 期组织技能考核,检验操作的规范性,巩固培训效果。 制定详细的检测操作流程,明确测量点选择、仪器操作 等规范。流程中需规定每个检测项目的测量点位置,如 电梯导轨的测量点需选在受力均匀的直线段, 避免在接 口或弯曲处测量,确保每次测量都在相同位置进行,减 少因测量点不一致导致的误差。仪器操作步骤需细化到 每个动作,如仪器预热的时间要求,测量时的操作力 度,避免因操作差异引入误差。流程还应包含异常情况 处理方法, 当仪器显示数据出现明显异常时, 需按照规 定步骤重新测量,检查仪器连接是否正常,测量点是否 偏移,确保数据的可靠性。

3.4 电梯状态把控措施

检测前对电梯进行预处理,确保其处于相对稳定的

运行状态。检查电梯的各个运行部件, 清理导轨表面的 杂物,避免运行时产生额外摩擦振动;调整松动的部 件,紧固连接螺栓,减少因部件卡阻导致的运行振动[4]。 对电梯的制动系统进行试运行检查,确保制动平稳无冲 击。对电梯进行几次空载试运行,让各部件充分磨合, 待运行速度、振动幅度稳定后再开始检测, 避免因启动 初期的不稳定状态影响测量结果。试运行过程中需观察 电梯运行是否顺畅,有无异常声响,及时排除潜在故 障。合理选择检测时段,减少电梯负载变化对测量的影 响。选择电梯使用频率较低的时段进行检测,此时电梯 负载变化较小, 可在相对稳定的负载状态下完成各项参 数测量。若需测量不同负载状态下的参数,应按规定顺 序依次进行,从空载到满载逐步增加负载,每次改变负 载后需等待电梯运行稳定再开始测量,确保负载变化对 测量的影响可控。检测过程中需记录电梯的实际负载情 况,包括负载重量、分布状态,为数据解读提供参考依 据。检测同一参数时需保持负载状态一致,避免因负载 变化导致测量结果不可比。

结束语

电梯检测是一项技术性强且要求严谨的工作,测量 误差的存在不可避免,但可以通过科学方法加以控制。 通过对检测仪器、环境条件、操作行为及电梯自身状态 等方面的综合分析,明确了各类因素对测量精度的具体 影响方式。在此基础上提出的误差控制措施,为提升电梯 检测质量提供了理论支持和实践指导。在今后的工作中, 应持续关注测量误差问题,不断完善检测技术和管理机 制,推动电梯安全检测工作的规范化与精准化发展。

参考文献

[1]王毅,周璇.关于电梯检验检测技术的应用及未来发展趋势的探讨[J].中国设备工程,2024(18):202-204.

[2]王贺.电梯检验检测技术实践[J].自动化应用,2023 (09):215-217.

[3]汪洋.浅议电梯检验检测技术的应用及发展[J].工业A,2023(1):37-39.

[4]郭淼,潘锋,李斌,等.基于大数据的电梯检验检测技术认可及故障分析应用研究[J].中国特种设备安全,2023(8):76-78.