GIS全封闭式组合电器安装和关键工艺控制点

任伟平 张海龙 王国铎 河南平芝高压开关有限公司 河南 平顶山 467000

摘 要: GIS全封闭式组合电器集成核心部件于金属外壳,以SF6气体为绝缘灭弧介质,优势显著。其安装流程包含安装前准备、基础安装、设备安装、气体系统安装及二次回路安装等环节。关键工艺控制点有清洁度、密封性、真空度及回路电阻。需全方位清洁设备与工具,保证密封面及密封圈质量并全面检漏,选好真空设备规范操作,确保导体连接质量并测试,检查绝缘件且进行耐压试验。

关键词: GIS; 全封闭式; 组合电器安装; 关键工艺控制

引言

在电力系统持续发展的大背景下,对电气设备的性能与可靠性提出了更高要求。GIS全封闭式组合电器因具备占地面积小、可靠性佳、检修周期长等突出优势,在电力系统中得以广泛运用。不过,其安装质量与运行性能、安全性紧密相连。安装流程复杂,环节众多,工艺要求高,稍有差池便可能引发设备故障,威胁电力系统稳定。故而深入研究其安装流程与关键工艺控制点十分必要。

1 GIS 全封闭式组合电器概述

GIS全封闭式组合电器将断路器、隔离开关、接地开 关等核心部件,集成于接地金属外壳内,内部充注SF6气 体作为绝缘和灭弧介质。各部件通过绝缘盆子与导体相 连,构成紧凑的电气整体。以110kV GIS变电站为例,采 用三相共箱式设计,将母线、断路器等设备集成于同一 金属壳体, 使变电站占地面积大幅缩减, 有效缓解城市 土地资源紧张的问题。其工作依赖SF6气体卓越的绝缘 与灭弧性能^[1]。断路器分闸时,电弧在SF6气体中快速熄 灭,降低设备损耗;隔离开关与接地开关用于隔离电源 和接地,保障检修安全;电流、电压互感器则为保护和 计量装置提供关键信号。在运行过程中,SF6气体的绝缘 特性隔绝外界环境干扰,确保设备稳定运行。相较于传 统敞开式电器, GIS优势显著。在空间利用上, 大幅减少 变电站占地面积, 契合城市建设需求; 全封闭结构使其 免受风沙、雨雪等环境因素影响,故障率显著降低,可 靠性更高; 其检修周期长, 大幅减少停电时间, 提升供 电稳定性;运行时产生的电磁干扰极小,对周边环境影 响微弱。某城市中心变电站改造采用GIS设备后,占地减 少约70%, 且5年内仅进行一次例行检修, 供电可靠性得 到极大提升。

2 GIS 全封闭式组合电器安装流程

2.1 安装前准备

在GIS全封闭式组合电器安装工作正式启动前,充 分的准备工作是保障后续安装顺利开展、确保设备安装 质量的关键。技术准备方面,安装人员必须深入钻研设 备安装图纸、技术文件以及相关标准规范,像GB 50147-2010《电气装置安装工程高压电器施工及验收规范》就 是重要的参考依据。在此基础上,制定一套详尽的安装 方案,明确安装步骤、质量标准以及安全措施。组织技 术交底活动至关重要,通过交底让每一位安装人员都清 晰了解安装要求和技术要点。例如在某220kV GIS安装 项目中,安装团队在前期精心组织了多次技术培训和交 底, 使安装人员熟练掌握了安装技术, 为后续安装工作 的顺利推进奠定了坚实基础。设备及材料检查环节同样 不容忽视。安装人员要对照设备清单和装箱单, 仔细核 对设备及零部件的数量和规格,确保准确无误,同时检 查外观是否存在损伤、变形等缺陷。对于关键的SF6气 体,要严格检查其质量,保证气体纯度、含水量等指标 符合规定要求。安装材料如螺栓、密封圈等也要逐一检 查, 杜绝质量问题。曾经在一次设备开箱检查中, 就发 现部分螺栓存在生锈现象,安装团队及时进行了更换, 避免了因螺栓质量问题影响安装质量。施工现场准备是 安装工作顺利进行的保障。安装现场应保持清洁、干 燥, 无灰尘和杂物, 并且要具备足够的安装空间和良好 的起吊条件。为防止风沙、雨雪等恶劣天气影响安装, 需搭建临时防护棚。要检查现场的照明、通风等设施是 否满足安装要求。某GIS安装现场就因未搭建防护棚、在 安装过程中突遇沙尘天气,导致设备内部进入沙尘,不 得不重新清理,严重延误了工期。

2.2 基础安装

基础安装是GIS全封闭式组合电器安装的重要起始环节,其安装质量直接影响后续设备的安装精度与运行稳定性。基础定位与预埋工作要求安装人员严格按照设计

图纸进行操作,首先,要精准测量基础中心线和标高, 以此确定基础的具体位置[2]。基础预埋件必须牢固可靠, 其位置偏差要严格控制在规范允许的范围内。基础槽钢 的安装更是关键,要确保其水平度,水平度偏差不能超 过1mm/m, 且全长偏差不超过5mm。在某110kV GIS基础 安装项目中,安装人员凭借精湛的技术和严谨的态度, 通过精确测量和反复调整,将基础槽钢水平度偏差控制 在0.5mm/m以内,为后续设备的精准安装奠定了坚实基 础。基础施工完成后,基础验收环节必不可少。验收人 员要全面检查基础的各项指标,包括基础尺寸、预埋件 位置以及基础强度等,确保这些指标都符合设计要求。 基础表面应保持平整,不能出现裂缝、蜂窝等缺陷。只 有当基础验收合格后,才能进行后续的设备安装工作。 如果在验收过程中发现基础存在问题,必须及时进行整 改,直至基础质量完全满足设备安装要求,这样才能保 障GIS设备在后续运行中的安全性和可靠性。

2.3 设备安装

(1)设备就位,设备就位是GIS全封闭式组合电器安 装的重要步骤。安装人员需根据安装顺序,选用合适的 起吊设备,将GIS设备各单元平稳吊运至基础上。起吊过 程中,必须格外小心,采取有效措施保护设备,防止碰 撞和损伤。设备就位后,要使用专业工具对设备的水平 度和垂直度进行调整,确保其达到安装要求。在某35kV GIS设备就位过程中,由于起吊设备操作人员经验不足, 操作不当,致使设备外壳发生轻微碰撞。所幸经仔细检 查,设备内部结构未受影响。但此次事件为安装团队敲 响了警钟,事后对起吊人员进行了严格的安全教育和操 作培训,以杜绝类似情况再次发生。(2)设备连接,设 备连接环节需严格遵循厂家安装说明书进行操作。在连 接设备各单元时,要着重保证导体接触良好,螺栓紧固 力矩必须符合规定标准。密封面的清洁工作不容忽视, 密封圈要安装到位,防止SF6气体泄漏。设备接线端子 应保持平整、清洁,并涂抹电力复合脂,以确保接线牢 固可靠。在某GIS设备连接过程中,安装人员通过细致检 查,发现部分螺栓紧固力矩未达到要求,立即进行了重 新紧固,有效避免了因螺栓松动导致接触电阻增大,进 而可能引发设备发热甚至故障的问题。

2.4 气体系统安装

在GIS全封闭式组合电器气体系统安装中,气体管道与SF6气体充注环节至关重要。气体管道需选用不锈钢管,连接方式采用焊接或法兰连接,保证连接牢固且密封良好。安装时管道要横平竖直、走向合理,杜绝死弯和锐角,与设备连接时留意接口方向和密封,避免气体

泄漏。曾有项目因管道焊接质量问题引发泄漏,后经重新焊接和严格检漏才确保密封性。SF6气体充注前,必须对气室进行抽真空处理,真空度要达到厂家规定,一般不高于133Pa,且抽真空时间不少于2小时,以此彻底排出气室内的水分和空气。充注时要使用专用设备,严格按照规定压力和速度操作。充气完成后,需检查气体压力和含水量是否达标。某GIS设备就曾出现充注后气体含水量超标的情况,安装人员通过再次抽真空并充注合格气体,成功解决了问题,保障了气体系统的正常运行。

2.5 二次回路安装

电缆敷设需严格依照设计图纸操作,合理规划电缆路径,防止交叉和重叠,确保敷设整齐美观且固定牢固。电缆保护管的安装也不容忽视,管口要密封良好,以防杂物进入。某GIS二次电缆敷设时,因路径规划不当,部分电缆交叉,给后续检修和维护带来不便,最终不得不重新敷设。二次接线则要依据接线图进行,保证接线牢固可靠,线号清晰准确。接线端子需压接良好,杜绝松动和虚接。二次回路接线完成后,必须进行回路导通和绝缘测试,以此确保二次回路正常工作。某GIS二次接线测试中,发现部分回路短路,经排查,是接线时线头误碰所致。安装人员重新整理接线后,再次测试,结果显示合格,保障了二次回路的正常运行,为GIS设备的稳定工作提供了有力支持。

3 GIS 全封闭式组合电器关键工艺控制点

3.1 清洁度控制

GIS全封闭式组合电器对清洁度要求极高,清洁度控 制是安装过程中的首要关键环节。在设备安装前,必须 使用清洁无纤维的白布和无水酒精对设备内部进行全方 位、彻底的清洁。白布能有效吸附灰尘, 无水酒精则可 溶解油污和金属屑等杂质[3]。清洁人员需仔细擦拭设备 内部的各个角落,确保无灰尘、油污、金属屑等残留。 清洁完成后,使用吸尘器吸净残留杂质,防止二次污 染。整个清洁过程应在无尘环境中进行,可搭建临时洁 净棚,减少外界灰尘进入设备内部。曾有某GIS设备在 安装后进行耐压试验时出现不合格情况,经详细检查发 现是设备内部存在金属屑。这些金属屑导致电场畸变, 影响了设备的绝缘性能。这一案例充分说明设备内部清 洁的重要性。安装工具的清洁也不容忽视。安装工具频 繁接触设备内部, 若工具不清洁, 杂质可能被带入设备 内部。安装工具应始终保持清洁,使用前用酒精仔细擦 拭、严禁使用已污染的工具进行设备安装。在某GIS安装 现场,工作人员发现部分安装工具表面有油污,立即进 行清洗和擦拭,避免了因工具污染影响设备清洁度。

3.2 密封性控制

密封性控制是保障GIS设备安全稳定运行的重要环 节。设备密封面的质量直接影响密封性能,密封面应平 整、光滑,无划伤、凹坑等缺陷。安装前,需用细砂纸 对密封面进行精心打磨,去除表面氧化层和微小缺陷, 使密封面达到良好的平整度和光滑度。打磨完成后,清 洁密封面并涂以适量密封脂,以填充密封面的微小缝 隙,增强密封效果。密封圈也是保证设备密封性的关键 部件。要选择合适规格的密封圈,安装前仔细检查其外 观有无损伤、变形。密封圈应正确安装在密封槽内,无 扭曲和偏移,安装过程中要小心操作,避免损伤密封 圈。安装完成后,需检查密封圈压缩量是否符合要求, 一般压缩量为15%-20%。在某GIS设备密封圈安装中, 发现部分密封圈压缩量不足,安装人员及时重新调整安 装,确保了密封圈的密封效果。设备安装完成后,还需 采用灵敏度不低于1×10⁻⁸(体积比)的检漏仪对各气室密 封部位、管道接头等进行全面检漏,检漏时间不少于24 小时, 重点检查密封面、焊缝、阀门等易泄漏部位。若 发现泄漏点,应及时处理,直至检漏合格。

3.3 真空度控制

真空度控制对于GIS设备内部气体的干燥和纯净至 关重要。在抽真空设备选择方面,应选用性能良好的真 空泵,其抽气速率需满足气室抽真空要求。真空泵应配 备真空表和逆止阀,真空表可实时监测真空度,确保抽 真空过程达到规定要求;逆止阀能防止气室内的气体倒 流回真空泵,保证抽真空过程安全可靠。曾有某GIS设 备在抽真空过程中,因真空泵性能不佳,导致抽真空时 间过长且真空度无法达到要求,后更换真空泵才顺利完 成抽真空工作。抽真空操作也有严格规范。抽真空前, 要仔细检查气室与真空泵连接管路是否密封良好。抽真 空过程中,密切关注真空表读数,确保真空度达到厂家 要求。当抽真空到规定真空度后,应继续抽真空一段时 间,一般不少于30分钟,以彻底抽出气室内残留的水分 和空气。若未按照规定时间继续抽真空,气室内水分含 量可能超标,影响设备绝缘性能。某GIS设备在抽真空时 未按规定操作,导致水分含量超标,后重新进行抽真空 处理才解决问题。

3.4 回路电阻控制

回路电阻控制是确保GIS设备电气性能良好的关键。导体连接质量直接影响回路电阻大小,导体连接应牢固可靠,接触良好。连接部位要清洁,无氧化层和污垢,以降低接触电阻。采用螺栓连接时,螺栓紧固力矩应符合要求,确保接触电阻符合标准。在某GIS设备回路电阻测试中,发现部分导体连接部位接触电阻偏大,经检查是螺栓紧固力矩不足,重新紧固后测试合格。设备安装完成后,需使用回路电阻测试仪对各回路电阻进行测试。测试电流应不小于100A,以保证测试结果的准确性,测试结果应不大于厂家规定值。对测试不合格的回路,应查找原因并进行处理,直至测试合格。在某110kVGIS设备回路电阻测试中,发现一条回路电阻超出标准,经检查是导体连接处存在接触不良问题,重新处理连接部位后,回路电阻测试合格。

结语

GIS全封闭式组合电器安装工作复杂且关键,安装质量与设备运行性能、电力系统安全稳定息息相关。本文详细阐述安装流程,深入剖析关键工艺控制点,明确了各环节操作要点与质量标准。实际安装务必严格依规操作,于各环节及关键工艺把控上精益求精。如此,方能保障安装质量,提升设备可靠性与使用寿命,为电力系统稳定运行筑牢根基。未来,技术持续发展,安装工艺需不断优化,安装水平也应稳步提升。

参考文献

- [1]曾军.GIS全封闭式组合电器安装和关键工艺控制点[J].水泥工程,2022(2):65-67.
- [2]师嘉辰.GIS全封闭组合电器设备的安装及注意事项[J].电脑爱好者(校园版),2020(13):230-231.
- [3]胡良山.运行中的SF6全封闭组合电器故障检测与分析[J].机电信息,2020(33):80-81.