水利工程施工管理特点及施工质量控制

陈燕腾

山东省水利工程局有限公司 山东 济南 250000

摘 要:水利工程施工管理受工程环境特殊、施工组织复杂、技术应用专业、安全管理严苛等因素影响,质量控制需关注原材料与设备、施工工序及特殊环境。实施策略包括建立质量责任体系、强化过程监督检查、完善质量反馈机制。通过明确责任、动态监控、持续改进,可提升水利工程施工质量,保障工程安全稳定运行,推动水利行业高质量发展。

关键词: 水利工程; 施工管理; 质量控制; 责任体系; 反馈机制

引言:水利工程作为基础设施建设的关键部分,其施工管理与质量控制直接关系到工程效益与安全。由于施工区域多处于江河、湖泊等自然环境,水文地质条件复杂,施工组织涉及多工种交叉作业,技术应用专业性高,安全管理要求严苛,给施工管理与质量控制带来挑战。探讨水利工程施工管理特点及质量控制关键环节与实施策略,对提升水利工程建设质量具有重要意义。

1 水利工程施工管理的主要特点

1.1 工程环境的特殊性

施工区域多处于江河、湖泊、峡谷等自然环境中, 水文条件复杂,水位涨落、水流速度变化直接影响施工 布局。河床冲刷程度随季节更迭呈现显著差异,枯水期 裸露的滩涂可能暗藏淤泥层, 丰水期上涨的水位则可能 淹没临时施工便道[1]。河道主流线的偏移会改变围堰受力 状态,回流区域容易淤积泥沙阻碍船舶通行。地质结构 多样,可能存在软土地基、岩石断层等情况,对基础施 工稳定性要求高。岩层走向与倾角的细微变化都可能改 变开挖方式, 断层带中填充的破碎岩体容易引发塌方, 需通过超前地质预报提前探明构造特征。岩溶发育区的 地下溶洞可能导致地基不均匀沉降, 需采取灌浆填充等 措施加固处理。气候因素波动大,暴雨、强风、高温等 天气易干扰施工节奏, 需针对性制定应对方案。台风过 境时狂风可能掀翻临时搭建的物料仓库,持续高温会导 致混凝土浇筑过程中出现早期裂缝, 突发性雷暴则可能 中断露天作业。河谷地带的局部小气候常表现出昼夜温 差剧烈的特征,空气湿度的骤升骤降会影响灌浆材料的 凝固速率。山间雾气的聚集可能降低能见度,对起重设 备的操作精度构成挑战。

1.2 施工组织的复杂性

涉及土方开挖、混凝土浇筑、设备安装等多个工种,各工序交叉作业频繁,需精准协调时间与空间关

系。土方开挖形成的边坡需要及时进行支护处理,否则 后续混凝土浇筑的脚手架搭设将面临安全隐患。混凝土 养护阶段的覆盖作业需避开钢筋绑扎的作业面,避免不 同工序在同一区域形成相互阻碍。基础处理与上部结构 施工的衔接需控制好间隔时间,过早进行上部施工可能 导致地基承载力不足。参与方包括施工单位、设计机 构、监理团队等,各方工作衔接需紧密配合,避免信息 传递偏差。设计图纸的局部调整需第一时间传递至施工 班组, 监理对隐蔽工程的验收意见需准确反馈至技术部 门,任何环节的信息滞后都可能造成返工。材料供应商 提供的建材性能参数需与设计要求核对无误,运输环节 的损耗情况需及时通报施工管理部门。大型机械设备种 类多、数量大,需合理规划停放区域与作业路线,保障 设备高效运转。履带式挖掘机与混凝土搅拌车的转弯半 径不同, 作业路线设计需考虑设备转弯时的空间余量, 泵送设备的停放位置需兼顾浇筑范围与电力供应线路。 起重机械的作业半径需避开高压线缆,设备检修时段需 错开施工高峰期。

1.3 技术应用的专业性

包含坝体防渗、隧洞衬砌、闸门安装等专项技术,不同工程结构对施工工艺要求差异显著。坝体防渗需根据坝型选择帷幕灌浆或防渗墙工艺,土坝与混凝土坝的防渗处理流程呈现明显区别。隧洞衬砌的模板支护方式需适配洞径大小,圆形隧洞与城门洞形隧洞的衬砌浇筑顺序各有讲究。渡槽预制构件的拼接精度需匹配水流力学要求,其支座安装的平整度会影响整体受力状态。新材料、新工艺的应用需结合工程特性,如高性能混凝土在坝体施工中的配比控制,对技术人员专业能力要求高。自愈合混凝土在裂缝修复中的反应机理需与坝体受力状态相匹配,纤维增强材料的铺设角度需契合结构应力分布规律。水下不分散混凝土的坍落度控制需适应不

同水深的浇筑条件,其凝结时间调整需关联水流扰动强 度。防渗膜的焊接温度需根据环境温度灵活调节,接缝 处的碾压力度需均匀一致。

1.4 安全管理的严苛性

存在高空作业、水下作业等高危场景,安全防护措施需全面到位。高空作业平台的护栏高度需适配作业面高度,防坠器的固定点需经过承重测试。水下作业的供氧设备需定期检查密封性能,潜水服的抗压强度需适配作业深度。脚手架搭设的立杆间距需符合承载标准,脚手板的铺设需严密无空隙。汛期施工面临洪水、塌方等风险,应急防控体系需时刻处于戒备状态,确保人员与设备安全。河道围堰的防渗体需随水位上涨逐步加高,边坡监测的预警值需根据土体含水率动态调整^[2]。施工营地的选址需避开山洪沟谷,应急物资的储备种类需涵盖救生衣、抽水机等防汛设备。爆破作业的警戒范围需根据爆破当量划定,哑炮处理的流程需严格遵循操作规程。有限空间内的通风设备需持续运转,气体检测的频率需与作业时长同步增加。深基坑开挖的边坡坡度需结合土壤性质设定,周边堆载的距离需保持安全间距。

2 水利工程施工质量控制的关键环节

2.1 原材料与设备质量把控

对水泥、钢材、砂石等原材料进行进场检验,核查 性能指标是否符合设计标准。水泥需检查初凝终凝时间 与安定性,受潮结块的水泥不得用于结构部位。钢材表 面不得有裂纹或折叠,弯曲试验后的弯折处不得出现断 裂。砂石的级配与含泥量需通过筛分试验测定,超标的 骨料需经过冲洗或筛选处理。防水材料的不透水性与拉 伸强度需经过抽样检测,不合格材料需及时清退出场。 外加剂的化学成分需与水泥性能适配,使用前需测试相 容性。施工机械设备需定期检修维护,确保运行精度, 避免因设备故障影响施工质量。混凝土搅拌机的叶片磨 损程度需定期检查,磨损过量会导致搅拌不均匀。起重 机的钢丝绳断丝数量需严格控制,达到报废标准的钢丝 绳必须更换。焊接设备的电流电压稳定性需每日校准, 输出参数波动会影响焊缝强度。测量仪器的精度需定期 校验,偏差超标的仪器不得用于关键部位放线。振捣设 备的振幅与频率需定期调试, 振动效果衰减的设备需及 时维修。

2.2 施工工序质量控制

基础处理工序需严格监控施工参数,如地基压实度、防渗墙深度等,确保基础稳固。土方碾压时需控制碾压遍数与行驶速度,碾压轨迹的重叠宽度需保持一致。振冲碎石桩的桩体密实度需通过连续取样检测,桩

身垂直度偏差需控制在允许范围内。高压喷射注浆形成 的防渗体需检查凝结体强度,钻芯取样的芯样完整性需 符合要求。桩基施工的成孔深度与孔径需逐桩检查, 孔 底沉渣厚度需清理至规定值以下。结构施工中, 混凝土 浇筑的振捣方式、养护措施,钢筋绑扎的间距、搭接长 度等均需符合规范。振捣棒插入混凝土的深度需达到规 定值,振捣时间需根据混凝土坍落度调整。养护覆盖物 需保持湿润,覆盖时间需满足强度增长要求。钢筋绑扎 的绑扎点间距需均匀分布, 搭接区域的绑扎数量需符合 构造要求。预埋件的位置偏差需控制在最小范围,固定 措施需防止浇筑过程中发生位移。模板安装的拼接缝隙 需严密,支撑体系的刚度需抵抗混凝土侧压力。隐蔽工 程施工完成后,需经全面检查确认合格方可进入下道工 序,防止隐患留存。地基处理后的承载力需经过载荷试 验验证,试验结果需符合设计要求。地下管线的接口密 封性能需通过压力试验检测,渗漏部位需重新处理。钢 筋保护层厚度需通过专用仪器检测,偏差超出范围的需 重新调整。

2.3 特殊环境下的质量控制

汛期施工需加强排水系统管理, 防止积水影响混凝 土强度。排水沟的坡度需确保排水畅通,集水井的布置 需覆盖整个作业面。排水泵的功率需与积水深度匹配, 备用泵需处于随时可启动状态。边坡顶部需设置截水 沟,防止雨水冲刷边坡引发坍塌。围堰的防渗性能需 每日巡查, 发现渗漏点需及时封堵。高温环境下需采取 遮阳、洒水等措施,控制混凝土内外温差,避免开裂。 砂石料场需搭建遮阳棚,降低骨料初始温度。混凝土运 输车辆需覆盖篷布,减少运输过程中的温度升高。浇筑 完成的混凝土表面需及时覆盖保湿材料, 洒水频率需根 据环境温度调整。仓面喷雾系统需在浇筑过程中持续运 行,降低环境温度对混凝土的影响。拌合站需搭建防晒 棚,避免阳光直射导致原材料温度升高。寒冷天气施工 需做好防冻保护,确保材料性能不受低温影响。拌合用 水需经过预热处理,避免低温水影响混凝土拌合温度。 砂石料中不得含有冰块, 冻结的骨料需经过解冻筛选[3]。 混凝土浇筑完成后需覆盖保温被,必要时采取蒸汽养护 措施。施工便道需及时清除冰雪, 防止运输车辆打滑影 响材料供应连续性。模板拆除时间需根据混凝土强度与 环境温度确定,避免低温下过早拆模造成结构损伤。

3 水利工程施工质量控制的实施策略

3.1 建立质量责任体系

建立质量责任体系需从管理层到作业层逐层明确质量职责,形成完整的责任链条。管理层需制定整体质量

目标,结合工程结构特点将目标分解到每个施工阶段, 如基础处理阶段需达到的地基承载标准, 主体结构施工 需满足的强度要求等, 让各环节都有明确的质量导向。 作业层需明确具体岗位的质量责任,例如混凝土浇筑工 人需把控振捣时间和范围,钢筋绑扎人员需确保搭接长 度和间距符合设计标准,每个操作步骤都要有对应的责 任人。通过签订质量责任书,将责任与岗位直接挂钩, 任何环节出现质量问题都能快速追溯到具体人员,避免 责任模糊导致的推诿现象。同时需建立责任联动机制, 上下游工序之间相互监督,前道工序质量不达标时,后 道工序有权拒绝承接,形成环环相扣的质量约束。这种 体系能让每个参与方都清楚自身在质量控制中的角色, 从源头减少质量隐患的产生。质量责任考核需与绩效评 价直接关联,对严格履行职责且质量达标者给予肯定, 对失职导致质量问题者按规定处理,通过奖惩机制强化 责任意识。

3.2 强化过程监督检查

过程监督检查需结合目常巡检与专项检查, 形成全 方位的监控网络。日常巡检由现场监理人员按固定路线 开展,重点查看施工工艺是否符合规范,如模板安装的 垂直度、支架的稳固性, 以及材料堆放是否符合防护要 求,避免因材料受潮或损坏影响使用质量。巡检中发现 的轻微偏差,需立即通知施工人员现场整改,防止小问 题积累成大隐患。专项检查针对关键工序开展, 如坝体 防渗层施工、隧洞衬砌浇筑等,需组织专业人员进行细 致核查。检查时需对照施工方案中的技术参数,逐一核 对实际操作数据,例如混凝土的坍落度、碾压设备的行 驶速度等,确保关键指标不偏离设计要求。对于隐蔽工 程,检查需覆盖每一个细节,如地基处理后的平整度、 预埋件的位置精度,确认无误后方可允许覆盖,避免隐 蔽部位的质量问题被掩盖。监督检查还需注重时效性, 检查结果需在当天反馈给施工团队,对于整改情况进行 跟踪复查,确保问题得到彻底解决。通过持续的过程监 控, 让质量控制贯穿施工全程, 而非仅依赖最终验收。 检查记录需详细完整,包括检查时间、部位、发现的问 题及处理结果,为后续质量追溯提供依据。

3.3 完善质量反馈机制

质量反馈机制的核心是建立信息收集网络,由专人 负责记录施工过程中的质量情况,包括出现的问题类型、 发生部位、处理方式及结果等,形成系统的质量档案。这 些信息需定期汇总分析,识别出高频出现的问题,例如某 段时间内混凝土表面裂缝反复出现,或边坡支护出现局 部变形等,通过梳理这些现象找到共性原因[4]。针对分析 得出的原因,组织技术人员研究改进措施,如调整混凝 土配合比以增强抗裂性,或优化边坡支护的锚杆间距以 提升稳定性。改进措施需在小范围试点应用,验证效果 后再全面推广,确保调整后的工艺切实有效。需将质量 反馈与施工方案更新相结合, 把实际施工中总结的经验 融入后续工序的方案设计中, 例如根据前期浇筑的养护 效果,调整后期混凝土的养护周期和洒水频率。这种动态 调整机制能让施工工艺不断适应工程实际需求, 形成持续 改进的质量提升循环, 使质量控制水平随着工程推进逐步 提高。反馈信息还需同步传递给设计单位,为设计优化 提供现场数据支撑,促进设计与施工的协同改进。

结束语

水利工程施工管理与质量控制紧密相连,管理特点 决定了质量控制的方向与重点。通过把握工程环境特殊 性、施工组织复杂性等管理特点,从原材料、工序、 特殊环境等方面把控质量关键环节,并建立质量责任体 系、强化过程监督检查、完善质量反馈机制等策略,可 有效提升水利工程施工质量。未来,随着技术发展,还 需不断探索创新管理方法,以适应水利工程建设的更高 要求。

参考文献

[1]杨强.水利工程施工管理特点及施工质量控制[J].世界家苑,2024(19):156-158.

[2]孔雷,赵群群,陈雪梅.探究水利工程施工管理特点及质量控制措施[J].工程与建设,2024,38(3):722-723,726.

[3]葛浩然.凤台县水利工程施工管理特点及质量控制的策略分析[J].中国房地产业,2024(30):222-224.

[4]王雷.水利工程施工管理特点及质量控制刍议[J].数字化用户,2024(35):159-160.