风力发电设备安全管理与运行维护分析

杨 涛1 梁晓莉2

- 1. 中国三峡新能源(集团)股份有限公司山西分公司 山西 忻州 035100
 - 2. 西安金风慧创技术有限公司山西分公司 山西 太原 030000

摘 要:随着全球对清洁能源需求攀升,风力发电规模不断扩大。本文聚焦风力发电设备的安全管理与运行维护展开分析。首先阐述安全管理的内涵及运行维护的定义与重要性,剖析二者的协同关系。研究指出,当前风力发电设备安全管理存在体系不完善、人员安全意识薄弱、设备风险管控难度大及信息化水平低等问题。基于此,提出构建科学管理体系、强化人员培训、优化风险管控、提升信息化水平及创新维护模式等策略,旨在为保障风力发电设备安全稳定运行、提升运维效率提供理论参考与实践指导。

关键词: 风力发电设备; 安全管理; 运行维护

引言:在全球能源转型与"双碳"目标推动下,风力发电作为清洁可再生能源的重要组成部分,其装机容量持续增长。然而,风力发电设备多位于复杂环境中,受自然条件、设备老化等因素影响,安全事故与运维难题频发,直接制约行业可持续发展。安全管理与运行维护是保障设备高效运转的核心环节,前者通过风险防控确保生产安全,后者以技术手段维持设备性能,二者相辅相成。当前,行业对设备安全与运维的系统性研究仍显不足,亟需深入分析现状痛点,探索科学管理路径,以提升风力发电的可靠性与经济性。

1 风力发电设备安全管理与运行维护的概述

1.1 风力发电设备安全管理的内涵

风力发电设备安全管理是以保障设备稳定运行、人员生命安全及环境生态安全为目标,通过制定系统性规章制度、实施风险管控措施、建立应急响应机制等手段,对风力发电设备全生命周期进行监督与管理的活动。其涵盖设备设计、安装、运行、检修等各环节,涉及机械、电气、气象等多学科领域,需综合运用工程技术、管理科学和信息技术,识别、评估并消除潜在安全隐患,预防设备故障与事故发生,确保风力发电系统安全、高效、可持续运行。

1.2 风力发电设备运行维护的定义与重要性

风力发电设备运行维护指通过日常巡检、状态监测、定期检修、故障处理等技术手段,维持设备正常性能、延长使用寿命的活动。由于风电设备长期暴露于复杂自然环境,易受强风、雷电、低温等因素影响,部件磨损、电气故障等问题频发。有效的运行维护可及时发现设备异常,避免小故障演变为重大事故,保障发电效率;通过预防性维护降低维修成本,提升设备可靠性。

1.3 安全管理与运行维护的关系

安全管理与运行维护是保障风力发电设备正常运转的有机整体,二者相互依存、协同增效。安全管理为运行维护提供制度框架与风险防控方向,通过明确操作规范、制定安全标准,确保运维人员作业安全及设备运行环境可控;运行维护则是安全管理的具体实践,通过设备状态监测、故障修复等工作,消除安全隐患,落实安全管理要求。安全管理为运行维护筑牢底线,运行维护为安全管理提供数据支撑与改进依据,二者紧密配合,共同提升风力发电系统的安全性、可靠性与经济性¹¹。

2 风力发电设备安全管理现状

2.1 安全管理体系不完善

当前风力发电设备安全管理体系存在明显缺陷。在制度层面,部分企业盲目套用行业通用标准,未针对海上风电高盐雾、高湿度,以及高原风电低温、强紫外线的特殊环境,制定适应性安全规范。制度执行方面,存在"重制定、轻落实"问题,跨部门协作流程混乱,设备验收部门与运维部门常因责任界定不清,对验收中发现的问题互相推诿,致使隐患长期得不到整改。考核监督机制也形同虚设,安全指标未与员工绩效紧密挂钩,对违规操作的处罚缺乏力度,无法形成有效的安全管理闭环,难以约束企业和员工的安全管理行为。

2.2 人员安全意识薄弱

风力发电行业人员安全意识淡薄问题突出。行业人员流动性大,年均流动率超30%,新员工人职培训周期普遍不足7天,仅进行简单的理论灌输,缺乏实操演练与安全警示教育,导致新员工对设备操作规程和风险防范要点掌握不牢。一线运维人员长期处于高强度工作状态,日均工作时长超10小时,疲劳作业现象普遍,为追求工

作效率,违规操作频发,近三年统计显示,因人为失误引发的安全事故占事故总数的45%。企业对安全文化建设重视不足,仅20%的风电场定期开展事故案例分析、安全知识竞赛等活动,未将安全意识融入企业文化,员工缺乏主动识别和防范风险的能力。

2.3 设备安全风险管控难度大

风力发电设备面临复杂的安全风险管控难题。设备多部署在高海拔、沿海、荒漠等极端环境,常年经受强风、暴雨、雷电等恶劣天气侵袭,如高海拔地区的风电设备年均受雷击超20次,沿海风电场叶片表面每年侵蚀厚度达0.5mm。随着设备大型化发展,齿轮箱、发电机等核心部件结构更复杂,故障率较以往上升30%,而传统人工巡检依赖经验判断,难以发现轴承磨损、齿轮箱油液劣化等早期故障。此外,极端天气预警系统与设备防护措施缺乏联动机制,当台风、暴雪等灾害来临时,无法及时调整设备运行状态或启动防护装置,常导致设备损毁,造成重大经济损失。

2.4 安全管理信息化水平低

风力发电设备安全管理信息化程度严重滞后。80%的风电场仍依赖纸质巡检记录,人工数据录入延迟超48小时,且存在20%的误差率,无法及时反映设备真实运行状态。设备监测系统各自独立,SCADA系统、振动监测系统、红外热成像系统等数据无法互通共享,形成"信息孤岛",导致故障预警准确率不足60%。智能化分析工具应用不足,多数企业尚未引入AI故障诊断模型、大数据预测算法,无法对设备运行数据进行深度挖掘与趋势分析,难以提前识别潜在风险,安全管理仍处于"事后处理"的被动阶段,无法满足现代化风力发电设备安全管理需求^[2]。

3 风力发电设备运行维护策略

3.1 构建科学完善的安全管理体系

(1)明确各层级人员安全职责是构建安全管理体系的基础。从企业管理层到一线运维人员,都需制定详细的岗位安全责任清单,将安全责任层层分解落实。管理层负责统筹规划安全管理工作,制定战略方针;运维人员则需严格执行安全操作规范,及时反馈设备运行状况,确保安全管理工作纵向到底、横向到边。(2)建立健全全流程安全管理制度与标准是体系建设的核心。针对风力发电设备运行、维护、检修等环节,制定严格的设备巡检制度、维护操作规范以及应急预案等。例如,规定设备巡检的时间间隔、检查内容和记录要求,规范设备维护的操作流程和安全防护措施,确保各项工作有章可循,降低因操作不规范引发的安全风险。(3)完

善风险预控与持续改进机制是保障体系有效性的关键。 定期开展安全风险评估,利用专业工具和方法识别设备 潜在安全隐患,并针对不同风险等级制定防控措施。同 时,建立反馈机制,收集运维过程中发现的问题,定期 对安全管理体系进行评估和优化,使其适应设备运行环 境变化和技术发展需求,从而为风力发电设备的安全稳 定运行提供坚实保障。

3.2 加强人员安全培训与教育

(1)科学规划培训内容与体系是加强人员安全培训 的前提。针对风力发电设备运维特点,培训内容需涵盖 安全法规、设备原理、操作规范、应急处理等核心板 块。对于新入职员工,重点开展基础安全知识和设备操 作入门培训;在岗员工则侧重新技术、新设备应用及复 杂故障处理的专项培训;管理人员需强化安全管理理念 与风险决策能力培训,通过分层分类的课程设置,构建 完善的培训体系。(2)多样化的培训实施方式是提升培 训效果的关键。采用理论授课、现场实操、案例分析、 模拟演练相结合的方式,增强培训的趣味性与实用性。 理论授课系统讲解安全知识与设备原理; 现场实操让员 工在实际环境中掌握操作技能;通过分析典型事故案 例, 剖析安全隐患与应对措施; 模拟高空坠落救援、电 气火灾处置等应急场景,提升员工的应急反应能力,使 培训内容真正转化为员工的实操能力。(3)建立健全考 核评估机制是保障培训质量的重要环节。培训结束后, 通过理论考试、实操考核、行为观察等方式对员工学习 成果进行全面评估。对于考核不合格者,安排针对性的 强化培训; 定期开展复训与考核, 巩固员工安全知识与 技能。

3.3 强化设备安全风险管控

(1)全面且精准的风险识别是强化设备安全风险管控的首要环节。通过人工巡检与智能监测相结合的方式,对风力发电设备进行全方位排查。人工巡检中,运维人员需仔细检查设备外观、运行声音等直观信息,发现诸如叶片表面裂纹、机舱部件松动等潜在问题;同时,借助振动传感器、温度传感器等智能设备,实时采集设备运行参数,精准捕捉轴承磨损、电气系统过热等隐蔽风险,建立详尽的设备风险台账。(2)科学的风险评估是制定合理管控措施的依据。运用定性与定量相结合的评估方法,综合考量风险发生的可能性和造成的后果。例如,采用风险矩阵法,将设备风险划分为高、中、低不同等级,针对高风险问题,如可能导致设备倒塌的塔架结构损伤,立即启动停机检修程序;对于中低风险,如轻微的齿轮箱润滑不足,制定阶段性维护计

划,明确整改时间和责任人,确保风险可控。(3)建立 健全风险预警与动态管控机制是保障设备安全运行的关 键。利用大数据分析技术,对设备历史运行数据和实时 监测数据进行深度挖掘,构建设备风险预警模型。当设 备运行参数偏离正常范围时,系统自动发出预警信号, 并结合专家知识库,为运维人员提供故障原因分析和处 置建议。

3.4 提升安全管理信息化水平

(1) 搭建智能化数据采集与监测平台是提升安全管 理信息化水平的基础。在风力发电设备关键部位,如叶 片、齿轮箱、发电机等,广泛部署各类传感器,实时采 集设备的转速、温度、振动、应力等运行数据, 并通 过物联网技术将数据传输至统一的管理平台。借助该平 台,运维人员可远程、实时查看设备运行状态,打破时 间与空间限制,实现对设备的全方位、全天候监测,及 时发现潜在的安全隐患。(2)运用大数据与人工智能技 术实现设备智能诊断与风险预测是关键。利用大数据分 析技术对海量设备运行数据进行深度挖掘,分析设备运 行规律,建立设备健康模型,预测设备故障发生的可能 性及时间节点。结合人工智能算法,对采集的数据进行 智能分析, 自动识别设备故障类型与原因, 为运维人员 提供精准的故障诊断报告和维修建议,实现从被动维修 到主动预防的转变,提高设备运维效率与安全性。(3) 推进安全管理流程数字化是提升信息化水平的重要保 障。将安全管理中的巡检计划制定、任务派发、检修记 录填写、隐患整改跟踪等流程进行数字化改造,通过信 息化管理平台实现流程的自动化与规范化。

3.5 优化运行维护模式

(1)推动维护模式从定期维护向状态维护转型是优化的核心方向。传统定期维护模式依赖固定周期检修,易造成过度维护或维护滞后,增加运维成本且降低设备效率。状态维护通过传感器实时采集设备振动、温度、转速等运行数据,结合大数据分析与人工智能算法,精准判断设备实际健康状态,仅在设备需要时安排维护。例如,当监测到齿轮箱油温异常升高,系统立即预警,

运维人员可据此开展针对性检修,避免故障扩大,有效 提升设备利用率与维护经济性。(2)强化预防性维护策 略的应用是提升设备可靠性的关键举措。通过建立设备 故障数据库,分析历史故障数据,预测易损件的使用寿 命与潜在故障风险。在设备关键部件临近预期寿命时, 提前更换磨损零件、调整设备参数,如对达到一定运行 时长的轴承进行预防性更换,降低突发故障概率。同 时,结合季节性特点制定预防性维护计划,如在台风、 冰雪等极端天气来临前,对风力发电机组进行全面检查 加固,保障设备安全稳定运行。(3)引入第三方专业 运维团队与建立动态评估机制是优化维护模式的重要保 障。第三方团队凭借其专业技术与丰富经验, 可填补企 业在复杂设备检修、新技术应用等方面的能力短板,实 现资源高效配置。此外,构建运维效果评估体系,从维 护成本、设备可用率、故障修复时间等维度, 定期对维 护模式的实施效果进行量化评估[3]。

结束语

风力发电作为清洁能源发展的重要支柱,其设备安全与运维管理直接关乎能源供给的稳定性与可持续性。 从设备全生命周期来看,唯有将预防性维护理念贯穿设计、安装、运行各环节,结合智能化监测技术提升故障预警能力,强化人员专业培训与制度规范,才能构建"安全筑基、运维增效"的良性体系。未来,随着风电产业向深远海、高海拔等复杂场景拓展,需持续融合数字技术与运维创新,在保障设备安全的同时,推动风电行业向高效化、智能化转型,为"双碳"目标的实现筑牢设备保障基石。

参考文献

[1]杨磊鹏.风力发电厂电气设备安全运行的管理与维护[J].民营科技,2021(7):147-148

[2]王瑞雪,武姿廷.风力发电设备安全管理与运行维护 [J].中国高新科技,2020(12):136-145.

[3]陈桂义.风力发电气设备安全管理及维护[J].百科论坛电子杂志,202,000(001):304-305.