基于物联网技术的水厂大坝安全监测系统设计与实现

樊小东 张 龙 张 俊 宁夏长城水务有限责任公司 宁夏 银川 750000

摘 要:本文聚焦于基于物联网技术的水厂大坝安全监测系统,深入且具体地阐述了设计与实现过程。首先全面剖析系统设计需求,涵盖监测参数、功能及性能等多方面。接着详细介绍系统总体架构,包括感知层、网络层、平台层和应用层。随后着重对各层关键技术实现展开细致描述,如传感器精准选型与科学部署、多种数据传输协议的合理选择、高效数据处理算法的设计等。

关键词: 物联网技术; 水厂大坝; 安全监测系统; 设计实现

1 引言

水厂大坝在供水、防洪等领域作用关键,其安全运行关乎下游群众生命财产与社会经济发展。但大坝运行中受自然和人为因素影响,如地震、洪水、不合理调度、周边工程建设等,威胁其安全。传统监测靠人工巡查和少量固定设备,人工巡查耗时耗力且难实时监测,固定设备采集数据有限,准确性和及时性欠佳,无法满足需求。物联网技术能实时全面感知和传输大坝参数,深度分析数据可及时预警,为安全运行提供决策依据,故设计基于物联网的监测系统意义重大且迫切。

2 系统设计需求分析

基于物联网技术的水厂大坝安全监测系统在设计上有全面需求。监测参数上,涵盖变形监测(包括水平位移、垂直位移、倾斜等反映大坝稳定性与局部变化)、应力应变监测(聚焦关键部位了解受力状况)、渗流监测(关注渗流量等防止内部破坏)以及环境参数监测(包含水温等分析其与安全状况关系);功能需求方面,要实现实时数据采集传输至监控中心,对数据清洗分析建模并预警,构建存储系统便于查询统计,提供友好界面方便管理人员查看与配置管理;性能需求上,需具备实时性、准确性、可靠性,且要有良好可扩展性以适应监测发展需求。

3 系统总体架构设计

基于物联网技术的水厂大坝安全监测系统采用分层 架构设计,主要包括感知层、网络层、平台层和应用 层,各层之间相互协作,共同实现系统的功能。

3.1 感知层

感知层是系统的底层,主要由各种传感器组成,负责采集大坝的各项监测参数。根据监测参数的不同,选用不同类型的传感器,如位移传感器、应力应变传感器、渗压传感器、温度传感器、雨量传感器等[1]。这些传

感器安装在大坝的各个关键部位,实时采集数据,并将 数据转换为电信号或数字信号。

图1 基于物联网技术的水厂大坝安全监测系统架构 3.2 网络层

网络层负责将感知层采集到的数据传输到平台层。 考虑到大坝监测环境的复杂性,采用多种无线通信技术相结合的方式,如ZigBee、Wi-Fi、4G/5G等。对于监测点较为集中、距离较近的区域,采用ZigBee或Wi-Fi通信技术;对于监测点较为分散、距离较远的区域,采用4G/5G通信技术。同时,为了保证数据传输的可靠性,采用数据冗余传输和错误重传机制。

3.3 平台层

平台层是系统的核心,主要包括数据存储、数据处理和分析、数据管理等模块。数据存储模块采用分布式存储技术,将采集到的数据存储在多个节点上,提高数据的存储可靠性和可扩展性。数据处理和分析模块对采集到的数据进行清洗、预处理和分析,建立数据分析模型,如神经网络模型、支持向量机模型等,及时发现大坝的异常情况并进行预警。数据管理模块负责对系统的用户、设备、数据等进行管理,保证系统的安全运行。

3.4 应用层

应用层是系统的上层,主要为用户提供各种应用服务。应用层包括监控中心、移动客户端等,用户可以通过监控中心的大屏幕或移动客户端的APP实时查看大坝的安全状况和历史数据,接收系统的预警信息,进行决策

和管理。

4 系统关键技术实现

- 4.1 感知层实现
- 4.1.1 传感器选型

表1 基于物联网技术的水厂大坝安全监测系统传感器选型建议

传感器类型	具体选型	工作原理	优点
位移传感器	激光位移传感器	利用激光的高方向性和高单色 性实现位移测量	测量精度高、响应速度快、非接触测量,测量 精度可达微米级,不对被测物体产生额外力
应力应变传感器	光纤光栅应力应变传感器	基于光纤光栅光学特性,应力 应变使反射波长变化,测量波 长变化得应力应变大小	抗电磁干扰、耐腐蚀、灵敏度高,能在恶劣环 境长期稳定工作
渗压传感器	振弦式渗压传感器	利用振弦振动频率与所受压力 成正比原理测量渗流压力	稳定性好、精度高、长期可靠性好,能适应复 杂水文地质条件
温度传感器	数字式温度传感器 (如DS18B20)	未提及	测量精度高、体积小、易于集成,单总线接 口,连接简单方便
雨量传感器	翻斗式雨量传感器	通过翻斗翻转次数测量降雨量	测量准确、可靠性高、维护方便

4.1.2 传感器部署

根据大坝的结构特点和监测需求,合理部署传感器是确保监测数据准确性和全面性的关键。在大坝的坝顶、坝腰、坝底等关键部位布置位移传感器和应力应变传感器,以全面监测大坝的变形和受力情况。在坝基和坝肩等部位布置渗压传感器,及时掌握渗流压力的变化,防止渗流对大坝基础造成破坏。在大坝周围合适的位置布置温度传感器和雨量传感器,监测环境温度和降雨量对大坝的影响^[2]。传感器的安装应牢固可靠,采用专门的安装支架和固定装置,避免受到外界因素的干扰,如风力、水流等。同时,要确保传感器的测量方向准确,以保证采集到的数据真实反映大坝的实际情况。

4.2 网络层实现

4.2.1 通信协议选择

ZigBee协议:适用于短距离、低功耗、低速率的无线通信场景。在大坝监测点较为集中的区域,如坝顶的某个局部范围内,采用ZigBee协议组建无线传感器网络。ZigBee网络具有自组网、自愈合的特点,能够自动调整网络拓扑结构,确保数据的可靠传输。其低功耗特性使得传感器节点能够长时间工作,减少电池更换的频率,降低维护成本。

Wi-Fi协议:具有传输速率高、覆盖范围广等优点。在监控中心附近或需要高速数据传输的区域,如大坝管理站的内部网络,采用Wi-Fi协议进行数据传输。Wi-Fi网络可以方便地与现有的局域网集成,实现数据的快速共享和传输。同时,Wi-Fi设备成本相对较低,易于部署和维护。

4G/5G协议:适用于长距离、高速率的无线通信场

景。对于监测点较为分散、距离较远的区域,如大坝周边的山区或偏远地区,采用4G/5G协议将数据传输到监控中心。4G/5G网络具有广泛的覆盖范围和高速的数据传输能力,能够满足实时数据传输的需求。虽然4G/5G通信的费用相对较高,但随着通信技术的发展和成本的降低,其在大坝监测领域的应用越来越广泛。

4.2.2 数据传输实现

传感器采集到的数据通过ZigBee无线传感器网络汇聚到网关设备。网关设备作为ZigBee网络与其他网络的桥梁,将ZigBee协议的数据转换为适合Wi-Fi或4G/5G网络传输的格式。例如,将ZigBee的短帧数据封装成IP数据包,以便在Wi-Fi或4G/5G网络中传输。然后通过相应的网络将数据传输到监控中心的服务器^[3]。在数据传输过程中,采用加密技术对数据进行加密处理,如采用AES加密算法,保证数据的安全性,防止数据在传输过程中被窃取或篡改。同时,建立数据传输日志,记录数据传输的时间、来源、目的地等信息,方便对数据传输过程进行监控和故障排查。

4.3 平台层实现

4.3.1 数据存储实现

采用分布式文件系统HadoopHDFS和分布式数据库HBase相结合的方式实现数据存储。HadoopHDFS具有高容错性、高扩展性等优点,适合存储大量的监测数据。它将数据分割成多个数据块,并分布在多个节点上进行存储,同时为每个数据块存储多个副本,以提高数据的可靠性和可用性。即使某个节点出现故障,数据也不会丢失,可以从其他副本中恢复。HBase是一种基于Hadoop的分布式列存储数据库,具有随机读写、高效检索等特

点,适合存储和管理结构化的监测数据。它采用列式存储结构,能够根据列名快速定位数据,提高数据查询效率。将HadoopHDFS和HBase结合使用,可以充分发挥两者的优势,实现海量监测数据的高效存储和管理。

4.3.2 数据处理和分析实现

数据清洗和预处理:对采集到的原始数据进行清洗,去除噪声和异常值。例如,对于位移传感器采集到的数据,可能会由于外界干扰或传感器故障等原因出现一些异常大的数值,这些数值需要被识别并剔除。同时,对数据进行归一化、标准化等预处理操作,使数据具有可比性。归一化处理可以将数据映射到[0,1]区间内,标准化处理可以使数据服从标准正态分布,这样可以消除不同传感器数据之间的量纲差异,提高数据分析的准确性。

数据分析模型建立:采用机器学习算法建立大坝安全评估模型和预警模型。例如,利用神经网络算法对大坝的历史监测数据进行分析。神经网络具有强大的非线性映射能力,能够自动学习数据中的复杂模式和关系。通过输入大量的历史监测数据,包括变形、应力应变、渗流等参数,让神经网络进行训练,调整网络的权重和偏置,使网络能够准确地预测大坝的安全状况。当监测数据输入到训练好的神经网络模型中时,模型可以输出大坝的安全评估结果,如安全、可能存在隐患、危险等。利用支持向量机算法建立预警模型,支持向量机能够在高维空间中寻找一个最优的超平面,将不同类别的数据分开^[4]。将正常的监测数据和异常的监测数据有来时,根据其与超平面的位置关系判断是否发出预警信息。

4.3.3 数据管理实现

采用基于角色的访问控制(RBAC)模型对系统的用户进行管理。根据用户的角色分配不同的权限,如管理员具有最高权限,可以对系统的所有功能进行操作,包括用户管理、设备管理、数据管理等;普通用户只能查看大坝的监测数据和预警信息,不能进行系统配置和修改操作。通过RBAC模型,可以有效地控制用户对系统资源的访问,保证系统的安全性。同时,建立设备管理模块,对传感器、网关等设备进行实时监控和管理。设备管理模块可以实时获取设备的状态信息,如传感器的工作是否正常、电池电量是否充足等。当设备出现故障时,能够及时发出警报,通知维护人员进行维修。同时,对设备的配置信息进行管理,如传感器的采样频率、通信参数等,方便对设备进行远程配置和管理。

4.4 应用层实现

4.4.1 监控中心实现

监控中心采用B/S架构,开发基于Web的监控界面。 监控界面采用直观的图表、图形和报表等形式实时显示 大坝的各项监测参数、安全状况评估结果和预警信息。 例如,使用折线图展示大坝位移随时间的变化趋势,使 用柱状图对比不同部位的应力应变大小,使用地图标注 传感器的位置和状态等。同时,提供历史数据查询、统 计分析等功能,管理人员可以通过设置时间范围、监测 参数等条件,查询特定时间段内的历史数据,并进行统 计分析,如计算平均值、最大值、最小值等,了解大坝 的安全变化趋势。监控界面还支持用户与系统的交互, 管理人员可以通过界面进行系统配置、设备控制等操 作,如调整传感器的采样频率、修改预警阈值等。

4.4.2 移动客户端实现

开发基于Android或iOS平台的移动客户端APP,实现与监控中心的实时数据同步。移动客户端提供简洁直观的用户界面,主要展示大坝的关键监测参数和预警信息。例如,在首页显示大坝的总体安全状况评级,如绿色表示安全、黄色表示可能存在隐患、红色表示危险。点击相应的评级可以进入详细页面,查看具体的监测参数和历史数据。移动客户端还支持推送功能,当系统发出预警信息时,能够及时将预警信息推送到用户的手机上,提醒用户注意。同时,支持用户对系统进行简单的配置和管理操作,如查看设备状态、修改个人密码等,方便用户在现场进行操作和管理。

结语

本文设计并实现了基于物联网技术的水厂大坝安全 监测系统,通过对系统需求的分析,设计了系统的总体 架构,并详细阐述了各层的关键技术实现。系统采用多 种传感器实现对大坝各项参数的实时采集,通过多种无 线通信技术实现数据的可靠传输,利用大数据和机器学 习技术对数据进行处理和分析,及时发出预警信息。未 来,随着物联网技术的不断发展,该系统将进一步完善 和优化,为大坝的安全运行提供更加可靠的保障。

参考文献

[1]罗明兴,吴景峰,曾武.基于北斗和物联网智能传感的大坝安全监测方法[J].中国新技术新产品,2024,(09):32-34.

[2]刘朋,曹海军.基于物联网技术的水厂建筑变形自动 化监测[J].建材与装饰,2020,(17):98-99.

[3]郑谦.大坝安全监测自动化系统应用现状分析及发展趋势研究[J].水上安全,2025,(08):70-72.

[4]钟登华,张天鸿,余红玲,等.智能时代与大坝工程建设智能化研究进展[J].水利学报,2025,56(01):1-19.