转鼓试验台上汽车道路行驶阻力的模拟技术研究

章 皓 朱 健 洛阳拖拉机研究所有限公司 河南 洛阳 471000

摘 要:汽车道路行驶阻力由滚动、空气、坡度及加速阻力构成,不同工况下阻力特性各异,且与汽车性能参数紧密相关。转鼓试验台可通过模拟这些阻力评估汽车性能。本文深入剖析转鼓试验台的工作原理、模拟阻力的关键技术,分析模拟精度的影响因素,并提出优化措施,为提升转鼓试验台模拟道路行驶阻力的准确性,推动汽车研发测试技术发展提供理论支撑。

关键词:转鼓试验台;行驶阻力;测功机控制;模拟精度;汽车测试

引言:汽车研发测试中,精确模拟道路行驶阻力至 关重要。传统道路测试受环境、安全等因素限制,效率 低且成本高。转鼓试验台作为室内测试设备,能模拟多 种道路工况。汽车行驶阻力复杂多样,不同工况下特性 不同,且与汽车性能参数紧密相连。深入探究转鼓试验 台模拟道路行驶阻力技术,有助于提高测试精度,加速 汽车研发进程,提升汽车整体性能与质量。

1 汽车道路行驶阻力分析

1.1 道路行驶阻力的构成

汽车行驶时受到的滚动阻力源于轮胎与路面的接触 变形。轮胎在压力作用下与路面接触, 胎面发生弹性形 变,滚动过程中形变不断恢复,能量损耗形成阻力。 路面的粗糙程度影响形变大小,坚硬路面使轮胎形变较 小,阻力相应降低;松软路面则会增大形变,增加阻 力。轮胎的结构和材料也有作用, 子午线轮胎比斜交轮 胎滚动阻力更小,橡胶的硬度和弹性同样影响阻力数 值。空气阻力产生于汽车行驶时与空气的相对运动[1]。 车身前部推开空气,后部形成真空区,前后压力差产生 阻力。车身外形是主要影响因素,流线型设计能减少空 气涡流,降低阻力;方正造型则会使空气流动紊乱,阻 力增大。行驶速度对空气阻力影响显著,速度提升时空 气阻力增长明显,成为高速行驶中的主要阻力来源。坡 度阻力由道路倾斜形成,汽车重力沿路面的分力构成阻 力。坡度越大,分力越大,阻力随之增加。上坡时阻力 与行驶方向相反,下坡时则转化为助力,影响汽车的动 力需求和制动负担。加速阻力是汽车加速时惯性产生的 阻力。汽车质量越大,加速时需要克服的惯性力越大, 阻力相应增加。

1.2 不同行驶工况下的阻力特性

城市道路行驶中,汽车频繁起步和制动,加速阻力 变化频繁。低速行驶时空气阻力较小,滚动阻力成为主 要成分,红绿灯和车流拥堵导致车速反复变化,加速阻力与滚动阻力交替主导行驶阻力。路面平整度较差时,滚动阻力会因颠簸进一步增加,整体阻力呈现不规则波动。高速公路行驶时,车速稳定且较高,空气阻力占据主导地位。长时间匀速行驶使滚动阻力保持稳定,路面坡度的细微变化会引起坡度阻力的小幅波动。超车过程中的短暂加速会使加速阻力短暂增加,但整体阻力以空气阻力和滚动阻力为主。山区道路的阻力特性受坡度影响显著。连续上坡时坡度阻力持续存在,与滚动阻力、空气阻力叠加,使总阻力大幅上升,对汽车动力系统形成考验。下坡路段坡度阻力转为助力,需通过制动控制车速,此时阻力主要来自滚动阻力和空气阻力,制动过程中不会产生额外阻力,但需消耗制动能量。

1.3 阻力与汽车性能参数的关系

汽车质量与阻力的关联明显,质量增加会使滚动阻力、坡度阻力和加速阻力同步上升。质量较大的汽车需要更多动力克服这些阻力,进而影响燃油效率和动力性能。轮胎特性直接影响滚动阻力,胎面花纹的深度和宽度改变与路面的接触面积,胎压的高低影响形变程度,低胎压会增大形变,使阻力上升,高胎压则可能降低抓地力,影响行驶安全。车身外形决定空气阻力的大小,迎风面积越大,空气阻力越大,流线型设计通过优化车身曲线,减少空气分离和涡流,降低阻力。车身的密封性也有作用,缝隙和突出部件会扰乱气流,增加阻力。发动机性能与阻力的平衡影响汽车动力表现,发动机的输出功率需足以克服总阻力,功率不足会导致加速缓慢、爬坡困难,功率过剩则可能增加能耗,合理匹配发动机性能与阻力需求是汽车设计的重要环节。

2 转鼓试验台的工作原理与结构

2.1 转鼓试验台的基本组成

转鼓试验台由多个关键部分协同工作。转鼓是与汽

车轮胎接触的核心部件,表面模拟路面特性,轮胎在其上方滚动,通过摩擦力带动转鼓旋转^[2]。驱动系统为转鼓提供动力,调节转鼓转速以模拟汽车不同的行驶速度,确保转速稳定以反映真实行驶状态。测功机连接转鼓,用于测量转鼓受到的扭矩,进而换算出汽车的动力输出,可施加阻力以模拟道路行驶中的各种阻力。控制系统负责协调各部分运行,设定试验参数如速度、阻力等,根据试验需求调整转鼓转速和测功机阻力。数据采集系统实时记录试验过程中的各项数据,包括转速、扭矩、汽车输出功率等,为后续分析提供原始信息。辅助装置如冷却系统可对运转部件降温,保证试验台长时间稳定工作,安全保护装置在出现异常时及时停止试验,防止设备损坏或事故发生。

2.2 转鼓试验台的工作原理

转鼓试验台通过转鼓转动模拟汽车在路上的行驶状态。汽车轮胎放置在转鼓上,启动后轮胎转动带动转鼓旋转,转鼓的转速对应汽车行驶速度。测功机根据设定的阻力参数,向转鼓施加反向力,模拟滚动阻力、空气阻力等道路行驶阻力,使汽车在试验台上感受到与实际道路相似的阻力作用。通过调节转鼓转速和测功机阻力,可模拟汽车加速、减速、匀速等不同行驶状态。测试过程中,数据采集系统记录汽车的动力输出、油耗等指标,以此评估汽车的动力性能和燃油经济性。这种模拟方式让汽车在固定位置即可完成多种道路行驶工况的测试,不受外界环境影响,便于精准控制试验条件。

2.3 转鼓试验台的类型与特点

单转鼓试验台的转鼓直径较大,表面平整度高,与轮胎接触面积接近实际路面,测试精度较高,能更准确地模拟滚动阻力和行驶状态,适用于对测试精度要求高的场合。但其结构复杂,占地面积大,建设成本较高,安装和维护难度也较大,多用于专业研发测试。双转鼓试验台由两个较小的转鼓组成,分别支撑汽车的左右车轮,结构相对简单,占地面积小,建设和维护成本较低,适合生产线检测和常规性能测试。由于转鼓直径较小,与轮胎接触状态和实际路面存在差异,滚动阻力模拟精度稍逊于单转鼓试验台,在高速行驶模拟中,轮胎变形特性与实际道路的偏差可能略大。选择时需根据测试需求平衡精度与成本,确保试验结果符合应用场景要求。

3 转鼓试验台模拟道路行驶阻力的关键技术

3.1 阻力模拟算法

理论模型建立需基于汽车动力学原理,将汽车在转 鼓试验台上的行驶状态抽象为数学关系。模型需包含转 鼓转速、汽车质量、轮胎刚度、空气流速等参数,通过 函数表达式关联这些参数与滚动阻力、空气阻力、坡度阻力和加速阻力的数值^[3]。需考虑转鼓与轮胎接触时的力学特性,将实际道路中轮胎的形变效应转化为模型中的变量,使模型能反映不同参数变化对阻力的影响,为后续算法实现提供可计算的理论框架。算法设计与优化需结合不同控制算法的特点。PID控制算法通过比例环节快速响应偏差,积分环节消除稳态误差,微分环节预判变化趋势,在阻力稳定的工况下能保持较高精度,但在参数波动较大时易出现超调。模糊控制算法基于经验总结的规则库,将输入变量模糊化后进行推理决策,对非线性系统的适应性更强,能在复杂工况下保持稳定输出。优化算法可采用混合控制策略,在稳态阶段启用PID控制保证精度,在工况突变时切换至模糊控制增强适应性,同时通过在线自整定参数,根据实时误差调整控制量,提升模拟的准确性和响应速度。

3.2 测功机控制技术

测功机在转鼓试验台中承担模拟道路阻力的核心作 用,通过向转鼓施加反向转矩实现阻力模拟。电力测功 机利用电机的电磁感应原理,通过调节励磁电流改变电 磁转矩,输出精度高且响应迅速,能快速跟随阻力变化 指令。水力测功机依靠水在工作腔体内的摩擦和冲击产 生阻力,结构简单成本较低,但调节速度较慢,适合阻 力变化平缓的工况。两种测功机的特性差异决定了其适 用场景, 需根据试验需求选择。测功机的控制策略需紧 密配合阻力模拟算法。根据算法输出的目标阻力值, 计 算对应的转矩指令,通过控制电路调节测功机的输出转 矩。在动态工况下, 需引入前馈控制补偿系统惯性, 当 检测到转鼓转速快速变化时,提前调整转矩输出以减少 滞后。同时需实时监测转鼓的实际转速,与目标转速对 比后修正转矩指令,确保转速与转矩的匹配关系符合道 路行驶阻力的物理特性,使模拟的阻力能真实反映汽车 行驶时的受力状态。

3.3 数据采集与处理技术

传感器选型与布置需保证数据的准确性和完整性。转速传感器需选用响应速度快的类型,安装在转鼓轴端以直接获取转鼓的瞬时转速。转矩传感器应具备较高的线性度和稳定性,串联在测功机与转鼓之间,精准测量传递的转矩。力传感器安装在轮胎与转鼓接触区域附近,监测两者间的接触力以辅助评估滚动阻力。传感器的布置需避免相互干扰,线缆走向需远离强电磁区域,确保信号传输稳定。数据处理与分析方法需对采集的数据进行多环节处理。原始数据首先经过滤波处理,去除机械振动和电磁干扰产生的噪声,保留有效信号。通过

校准程序消除传感器的系统误差,将信号值转换为物理量。对处理后的数据进行趋势分析,提取阻力随时间、转速的变化规律,与理论模型计算结果对比,评估模拟效果。对于偏差较大的数据,需追溯采集过程中的传感器状态和试验条件,分析成因以优化模拟参数,形成数据驱动的技术改进闭环。

4 模拟精度的影响因素与提高措施

4.1 影响模拟精度的因素分析

试验台自身因素对模拟精度的影响显著。转鼓的表 面质量直接影响轮胎与转鼓间的摩擦力,表面粗糙度过 高会增大滚动阻力模拟误差,过于光滑则可能导致轮胎 滑移,偏离实际道路接触状态[4]。转鼓直径大小关系到轮 胎的接触弧度, 直径过小会使轮胎形变与实际道路差异 增大,影响滚动阻力的传递特性。转动惯量过大会导致 转鼓转速变化滞后,无法及时响应汽车加速或减速时的 阻力变化。测功机的精度不足会使输出阻力与目标值产 生偏差,响应速度迟缓则难以跟上动态工况下的阻力变 化节奏,制约模拟的实时性。环境因素通过多方面影响 模拟精度。温度变化会改变轮胎的硬度和弹性, 高温使 轮胎变软增加滚动阻力, 低温则使轮胎变硬导致阻力特 性改变。湿度升高会影响传感器的电气性能,降低测量 精度,同时可能加剧转鼓表面的氧化,改变摩擦系数。 气压变化会影响空气密度,进而改变空气阻力的模拟 值,低气压环境下空气阻力计算值与实际偏差增大,影 响整体阻力模拟的准确性。汽车状态因素对模拟精度的 影响不可忽视。轮胎气压不足会使接地面积增大,滚动 阻力模拟值偏高; 气压过高则会减少接触面积, 导致阻 力模拟值偏低。轮胎磨损程度不同,表面花纹深度变化 会改变与转鼓的摩擦系数,影响滚动阻力的传递。悬挂 系统状态不佳会使轮胎与转鼓的接触压力分布不均,在 模拟过程中产生额外的阻力波动, 无法真实反映汽车在 实际道路上的受力状态。

4.2 提高模拟精度的措施

试验台优化设计需从结构和性能两方面入手。提高 转鼓的制造精度,保证表面平整度和圆度,减少因加工 误差导致的接触力波动。根据试验需求选择合适直径 的转鼓,使轮胎形变接近实际道路行驶状态。优化测功 机的控制算法,提升响应速度和输出精度,确保阻力模 拟能快速跟随工况变化。减轻转鼓的转动惯量,采用轻 质高强度材料制造转鼓,减少惯性对动态响应的影响。 环境控制与补偿可减少外界干扰。采用恒温恒湿设备维 持试验环境稳定,将温度和湿度控制在合理范围内,减 少其对轮胎和传感器性能的影响。在空气阻力模拟中引 入气压传感器,实时监测环境气压并修正空气阻力计算 值,补偿气压变化带来的误差。对传感器测量数据进行 温度补偿,通过校准曲线修正不同温度下的测量偏差, 提高数据准确性。汽车状态监测与调整需形成闭环控 制。建立汽车状态监测系统,实时监测轮胎气压、温度 和磨损程度,发现异常时及时提醒调整。在模拟过程 中,根据轮胎磨损情况修正滚动阻力计算模型,补偿摩 擦系数变化带来的误差。对悬挂系统进行检查和调整, 确保轮胎与转鼓接触均匀,减少因悬挂状态不佳导致的 阻力波动, 使转鼓试验台上的汽车状态尽可能接近实际 道路行驶条件。

结束语

转鼓试验台模拟汽车道路行驶阻力技术对汽车研发 意义重大。通过研究阻力构成、工况特性及与汽车参数 关系,明确了模拟重点。掌握转鼓试验台原理与关键技术,分析模拟精度影响因素并提出优化措施,能有效提升模拟准确性。未来,随着技术发展,该模拟技术将不断完善,为汽车行业提供更精准、高效的测试手段,推 动汽车技术持续进步。

参考文献

[1]孙凯.汽车行驶阻力在转鼓试验台的电模拟研究[J]. 车时代.2021(2):30-31.

[2]刘慎微,黄成林,刘文亮,等.低温试验转鼓阻力对电动汽车能耗和续驶里程的影响[J].北京汽车,2024(3):21-24.

[3]钱国刚,秦宏宇,杨帆,等.欧美轻型车下一阶段转鼓试验尾气排放标准研究[J].北京汽车,2024(4):1-6.

[4]胡伟,钟能超,蒋一春.不同转鼓加载阻力下轻型汽车 WLTC循环排放及油耗研究[J].时代汽车,2023(6):163-165.