煤矿业机电维护管理系统研究与应用

郑明凯

河南国龙矿业建设有限公司 河南 永城 476600

摘 要:煤矿机电设备的高效运行对安全生产至关重要。煤矿业机电维护管理系统通过创新架构设计,整合设备状态实时监测、故障预测等功能模块,结合科学的数据库与安全设计。应用实践表明,该系统实现了设备状态的精准把控,有效预测潜在故障,优化维护资源配置,为管理决策提供有力支撑,显著提升煤矿机电设备管理效率与安全性,推动煤矿业智能化运维发展。

关键词:煤矿业;机电维护;管理系统;应用

引言

随着煤矿开采向智能化、高效化发展,机电设备的稳定运行成为安全生产核心保障。传统维护管理模式存在响应滞后、资源浪费等问题,难以满足现代化煤矿需求。本文基于煤矿业机电维护管理的实际需求,深入研究系统架构、功能模块、数据库及安全设计,探讨其在设备监测、故障预测、资源优化和决策支持等方面的应用,旨在为煤矿机电设备智能化管理提供创新解决方案。

1 煤矿业机电维护管理系统概述

煤矿业机电维护管理系统作为保障煤炭生产安全、 高效运行的核心技术支撑体系,深度融合物联网、大数 据、人工智能等前沿技术,构建起覆盖设备全生命周期 的智能化管理架构。该系统以实时感知设备运行状态为 基础,通过在机电设备关键部位部署振动传感器、温度 传感器、电流电压监测装置等多元感知元件, 持续采集 设备运行过程中的振动频率、温度变化、负荷波动等关 键数据,为设备健康状态评估提供海量原始数据支撑。 基于采集到的设备运行数据, 煤矿业机电维护管理系统 利用数据挖掘算法与机器学习模型,构建设备故障预测 模型。通过对设备历史运行数据、故障案例数据的深度 分析,精准识别设备运行参数异常波动规律,在设备故 障发生前及时发出预警信息,将传统被动式维修转变为 主动预防性维护,有效降低突发故障对生产作业的干 扰。系统借助数字孪生技术,为煤矿机电设备建立虚拟 仿真模型,实现对设备运行状态的可视化动态模拟,运 维人员可通过三维可视化界面直观掌握设备运行全貌, 高效完成设备故障诊断与维修方案制定。煤矿业机电维 护管理系统整合设备档案管理、维修工单管理、备件库 存管理等功能模块,形成一体化管理平台。设备档案模 块完整记录设备采购、安装、运行、维修等全流程信 息,为设备性能分析与寿命预测提供数据依据;维修工 单管理模块实现维修任务从创建、派发、执行到验收的 全流程线上化管理,提升维修作业效率与质量;备件库 存管理模块通过实时监控备件库存数量、使用频率, 结合设备维修需求预测,实现备件的精准采购与科学储 备,优化企业资金占用与资源配置。该系统全方位保障 煤矿机电设备稳定运行,助力煤炭生产向智能化、高效 化方向发展。

2 煤矿业机电维护管理系统设计

2.1 系统架构设计

采用分层分布式架构,旨在打造高效、稳定且具扩 展性的系统体系。最底层为设备感知层, 部署大量传感 器于各类机电设备,实时采集设备运行参数,如温度、 振动、电流、电压等关键数据,全面精准反映设备运行 状态。这些传感器通过有线或无线通信方式,将采集数 据传输至数据传输层。数据传输层构建于矿井现有网络 基础设施之上,融合工业以太网、无线通信等技术,保 障数据可靠、高速传输, 克服矿井复杂环境对数据传输 的干扰。于传输过程中,运用数据加密技术,确保数据 安全不泄露。核心的业务逻辑层,对接收数据深度处理 与分析,内置故障诊断、性能评估、维护决策等算法模 型。通过对设备运行数据趋势分析,预测潜在故障,提 前制定维护策略,优化设备运行,提升整体生产效率。 最上层的用户展示层,提供简洁直观操作界面,以可视 化形式呈现设备状态、报警信息、维护计划等关键信 息。支持多种终端访问,包括电脑、平板、手机等,方 便管理人员随时随地掌控设备情况,及时决策与调度。

2.2 功能模块设计

设备管理模块,详细记录设备基础信息,涵盖设备 型号、制造商、采购日期、安装位置等,为设备全生命 周期管理提供依据。实时跟踪设备运行状态,显示设备 运行、停机、故障等状态信息,便于及时发现异常。故 障诊断模块,运用智能算法与数据分析技术,对设备运 行数据深度挖掘。当设备出现异常数据, 迅速分析判断 故障类型与原因,精准定位故障部位,为维修人员提供 明确维修方向,缩短故障排查时间。维护计划模块,依 据设备运行状况、历史故障数据、维护周期等因素,智 能生成科学合理维护计划。明确维护时间、维护内容、 维护人员安排等,确保设备定期维护,预防故障发生, 延长设备使用寿命。库存管理模块,对设备配件库存全 面管理,实时监控配件库存数量、出入库记录。设置库 存预警值, 当库存低于阈值自动报警, 提醒及时采购, 避免因配件短缺导致设备维修延误。对配件采购、领用 流程规范化管理,提高库存管理效率。报表统计模块, 根据用户需求生成各类报表,如设备运行报表、故障统 计报表、维护费用报表等。以直观图表、数据形式呈 现,为管理人员提供数据支持,助力其掌握设备整体运 行情况,做出科学决策[1]。

2.3 数据库设计

选用适合煤矿复杂环境与数据处理需求的关系型数 据库。构建设备信息表,存储设备详细基础信息,包括 设备唯一标识、名称、型号、规格参数、生产厂家等, 设备唯一标识作为主键,确保数据准确性与唯一性,方 便设备信息快速检索与管理。运行状态表,实时记录设 备运行状态数据,与设备信息表通过设备唯一标识关 联。记录设备运行时间、停机时间、故障发生时间、故 障代码等信息,为设备运行分析与故障诊断提供数据支 撑。维护记录表,详细记录设备维护相关信息,包括维 护时间、维护人员、维护内容、维护费用等。与设备信 息表关联,全面呈现设备维护历史,为制定后续维护计 划提供参考依据。库存信息表,管理设备配件库存,记 录配件名称、型号、库存数量、采购价格、入库时间、 出库时间等信息。以配件唯一标识为主键,实现库存信 息精准管理与查询。设计用户信息表,存储系统用户账 号、密码、权限等级等信息,保障系统安全访问与操作 权限控制。各表之间通过合理外键关联,建立紧密数据 联系,确保数据一致性与完整性,满足系统高效数据存 储与查询需求。

2.4 安全设计

物理安全层面,于数据中心、服务器机房等关键场所,安装门禁系统、视频监控设备,严格限制人员出入,实时监控场所安全状况。对服务器等硬件设备,采取冗余备份、不间断电源(UPS)供电等措施,保障设备稳定运行,防止因硬件故障导致数据丢失或系统瘫痪。网络安全方面,部署防火墙,阻挡外部非法网络访问与

恶意攻击,隔离内部网络与外部不安全网络。采用入侵检测系统(IDS)、入侵防御系统(IPS),实时监测网络流量,及时发现并阻止网络入侵行为。对网络通信数据,运用SSL/TLS等加密协议加密传输,防止数据在传输过程中被窃取或篡改。数据安全上,定期对数据库进行全量与增量备份,将备份数据存储于异地安全场所,防止因本地灾难导致数据永久丢失。对敏感数据,如设备运行核心数据、用户账号密码等,采用加密算法存储,确保数据存储安全。访问控制环节,基于角色的访问控制(RBAC)模型,为不同用户分配相应角色与权限。如管理员拥有系统最高权限,可进行系统配置、用户管理等操作;普通维护人员仅拥有设备维护相关操作权限,限制用户对系统功能与数据访问,保障系统安全稳定运行[2]。

3 煤矿业机电维护管理系统应用分析

3.1 设备状态实时监测应用

(1)煤矿业机电设备运行环境复杂,面临高湿度、 粉尘及振动等多重挑战,设备状态实时监测系统依托传 感器网络与物联网技术构建起立体感知体系。在采掘设 备、运输系统及通风设备关键部位部署振动传感器、温 度传感器、压力传感器等,通过4G/5G或工业以太网将 设备运行参数实时传输至数据中心,实现对设备转速、 电流、液压压力等关键指标的毫秒级数据采集,构建起 设备运行的数字化镜像。(2)系统运用边缘计算技术在 数据采集端对原始信号进行初步滤波与特征提取,降低 数据传输压力的同时提升数据处理效率。结合大数据分 析平台,将采集的多维数据进行融合处理,通过可视化 界面以三维模型、动态曲线等形式呈现设备实时运行状 态,使运维人员能够直观掌握设备运行全貌,如皮带输 送机的张紧力变化、提升机的制动闸间隙等关键参数异 常可即时触发声光报警。(3)基于历史数据与行业标准 构建的设备健康度评估模型,对设备运行状态进行量化 打分。当设备运行参数偏离正常阈值范围时, 系统自动 生成预警信息,并根据异常程度划分不同风险等级,为 运维人员制定针对性的检修策略提供数据支撑,有效避 免因设备突发故障导致的生产中断与安全隐患[3]。

3.2 故障预测与预防性维护应用

(1)故障预测模块基于机器学习算法构建设备故障 预测模型,通过对设备全生命周期历史运行数据、故障 记录及维修日志的深度挖掘,识别设备故障发生前的特 征参数变化模式。采用LSTM(长短期记忆网络)、随机 森林等算法对设备运行数据进行时序分析,捕捉设备性 能衰退趋势,如预测液压泵的磨损程度、电机轴承的疲 劳寿命,提前数月预判潜在故障风险。(2)结合设备的 工况数据与环境参数,系统通过建立故障因果关系网络模型,分析不同因素对设备故障的影响权重。例如在综采工作面,将采煤机的截割速度、煤层硬度与设备振动数据相结合,精准预测传动部件的故障概率,并生成故障发生概率随时间变化的预测曲线,为预防性维护计划的制定提供科学依据。(3)预防性维护策略制定模块依据故障预测结果,综合考虑生产计划、设备可用率及维护成本等因素,自动生成最优维护方案。针对不同类型设备制定差异化的维护策略,如对关键设备采用状态维修,在故障征兆初期进行精准维修;对辅助设备采用定期维护与事后维修相结合的方式,在保障生产连续性的同时降低维护成本,实现从被动维修向主动维护的转变。

3.3 维护资源优化配置应用

(1)维护资源优化配置系统以设备维护需求为导 向,对维护人员、备件库存及维修工具等资源进行动态 管理。通过建立资源数据库,详细记录每个维护人员的 技能专长、工作负荷及培训记录,结合设备维护任务的 技术难度与紧急程度,运用智能调度算法实现维护人员 与任务的精准匹配,提升维修团队的工作效率与任务完 成质量。(2)在备件库存管理方面,基于设备故障预测 结果与历史备件消耗数据,采用ABC分类法与经济订货 量模型(EOQ)优化备件库存结构。对关键设备的易损 件设置动态安全库存阈值, 当库存水平接近阈值时, 系 统自动触发补货预警,并结合供应商交货周期与价格因 素,推荐最优采购方案,在保障维修及时性的同时降低 库存积压成本。(3)系统通过构建维护资源协同调度平 台,实现人员、备件与工具的一体化调度。在处理复杂 设备故障时,可根据现场需求快速调配异地专家资源进 行远程技术支持,同时协调备件配送与专用工具运输, 形成跨区域、跨部门的协同作业机制, 缩短设备停机时 间,提升煤矿企业的整体生产效能。

3.4 管理决策支持应用

(1)管理决策支持系统通过整合设备状态监测、故障预测及维护资源配置等多源数据,运用数据挖掘与商

业智能技术,构建起面向煤矿机电维护管理的决策分析 模型。通过对设备综合效率(OEE)、维护成本占比、 故障停机损失等关键绩效指标(KPI)的实时计算与可 视化分析, 为管理层提供直观、全面的设备管理运营视 图。(2)系统具备情景模拟与决策推演功能,能依据多 样化的生产场景,灵活设置不同的生产计划调整、设备 更新改造、工艺流程优化等假设条件,精准模拟各类决 策方案对设备运行状态、维护成本、生产效益以及产品 质量等多方面的影响。例如模拟更换新型节能电机后的 能耗降低幅度与投资回报周期,为设备更新决策提供量 化依据,辅助管理层评估决策风险与收益。(3)基于历 史数据与行业对标分析,系统生成设备管理趋势预测报 告,对未来设备故障率变化、维护资源需求及技术升级 方向进行前瞻性研判。结合机器学习算法的持续优化, 为煤矿企业制定中长期设备管理战略、技术创新规划提 供数据驱动的决策支持, 助力企业提升核心竞争力, 实 现可持续发展[4]。

结语

综上所述,煤矿业机电维护管理系统通过科学设计与实际应用,有效解决了传统管理模式的弊端,在设备监测、故障预防、资源配置和管理决策等方面取得显著成效。未来,随着技术不断进步,该系统将进一步融合人工智能、大数据等前沿技术,持续提升煤矿机电设备管理的智能化水平,为煤矿安全生产与高效运营提供更强有力的支持。

参老文献

[1]任学伟.关于煤矿机电设备管理与维护分析[J].内蒙古煤炭经济,2023(23):166-168.

[2]仇凯,颜雷,陈云龙.煤矿机电设备健康管理与预防性维护[J].内蒙古煤炭经济,2024(4):124-126.

[3]成锐.煤矿机电设备管理及维护方法研究[J].当代化工研究,2021(6):141-142.

[4]闫力维,高清福,杨春红.煤矿机电设备维护管理标准 化模式研究[J].能源科技,2020,18(9):67-70.