煤矿采矿工程巷道掘进与支护技术研究

李 鹏

冀中能源股份公司万年矿生产服务二区 河北 邯郸 056300

摘 要:煤矿采矿工程中,巷道掘进与支护技术至关重要,直接关系到矿井安全和生产效率。掘进技术需根据地质条件选择机械化或钻爆法等方式,确保巷道稳定。支护技术则采用锚杆、棚式、U型钢等多种方法,强化巷道稳定性,防止坍塌。同时,需注重通风防尘与瓦斯排放,保障施工安全。本研究旨在分析掘进与支护技术,为煤矿采矿工程提供技术参考。

关键词:煤矿采矿工程;巷道掘进;支护技术

引言:煤矿采矿工程中,巷道掘进与支护技术的科学应用是确保矿井安全高效生产的基石。随着开采深度的增加,地质条件愈发复杂,对巷道掘进与支护技术提出了更高要求。本研究旨在系统性地探讨巷道掘进方法及其与支护技术的有机结合,旨在为复杂地质条件下的煤矿开采提供技术指导和解决方案,推动我国煤矿采矿工程的技术进步与安全生产。

1 煤矿采矿工程巷道掘进技术

- 1.1 巷道掘进的基本原理与流程
- 1.1.1 巷道掘进的定义与目的

巷道掘进是煤矿采矿工程中的关键步骤,它指的是在煤层或岩层中,通过一系列技术手段将岩石或煤体破碎下来,形成一条供开采、运输、通风等使用的地下通道。这一过程的目的是为了满足煤矿开采过程中的实际需求,确保采矿作业的高效与安全。

1.1.2 巷道掘进的常用方法及流程概述

巷道掘进的常用方法主要包括钻爆法、机械掘进法 和盾构法等。其中,钻爆法是最传统的方法,通过钻 孔、装药、爆破等步骤实现巷道掘进;机械掘进法则利 用掘进机等设备进行连续或半连续的掘进作业;盾构法 则多用于长距离、大断面的隧道掘进。流程上,巷道掘 进通常包括测量定位、掘进作业、支护安装、通风与防 尘以及安全检查等环节。测量定位是确保巷道掘进方向 准确的关键步骤;掘进作业则根据所选方法进行;支护 安装是为了保证巷道的稳定性;通风与防尘则是为了改 善掘进作业环境;安全检查则贯穿整个掘进过程,确保 作业安全。

1.2 巷道掘进的关键技术

(1)综合机械化掘进技术及其应用。综合机械化掘进技术是现代煤矿采矿工程中的主流技术。它利用掘进机等机械设备进行掘进作业,具有掘进速度快、效率

高、安全性好等优点。在实际应用中,掘进机能够根据巷道的地质条件和掘进要求进行适应性调整,确保掘进作业的顺利进行。(2)掘锚融合化掘进工艺的特点与优势。掘锚融合化掘进工艺是一种新型的掘进技术,它将掘进与支护作业紧密结合在一起。这种工艺不仅提高了掘进效率,还确保了巷道的稳定性。掘锚一体机的使用使得掘进与支护作业能够同时进行或快速转换,大大缩短了掘进周期。(3)钻爆法掘进技术的适用条件与操作要点。钻爆法掘进技术适用于地质条件复杂、岩石硬度较高的场合。在操作要点上,需要严格控制钻孔的布置、装药量以及起爆顺序等参数。同时,还需要加强爆破作业的安全管理和监督,确保爆破器材的质量和性能符合要求^[1]。

1.3 巷道掘进的影响因素分析

(1)巷道围岩强度对掘进的影响。巷道围岩强度是影响掘进效率和巷道稳定性的关键因素之一。围岩强度越高,掘进难度越大,但巷道稳定性也相对较好。因此,在掘进过程中需要根据围岩强度选择合适的掘进方法和支护方式。(2)地应力对巷道稳定性的影响。地应力是巷道掘进中不可忽视的因素。地应力的大小和方向对巷道的稳定性具有重要影响。在掘进过程中,需要充分考虑地应力的作用,采取相应的支护措施来抵消地应力的影响,确保巷道的稳定性。(3)巷道断面设计与掘进效率的关系。巷道断面设计对掘进效率具有重要影响。合理的断面设计能够减少掘进过程中的阻力,提高掘进效率。同时,断面设计还需要考虑通风、运输等实际需求,确保巷道能够满足采矿作业的要求。

2 煤矿采矿工程巷道支护技术

- 2.1 巷道支护的基本原理与目的
- 2.1.1 巷道支护的定义与重要性

巷道支护是指在煤矿开采过程中, 为防止巷道围岩

因开采活动引发的应力重新分布而导致的破坏或垮塌, 采用一系列技术手段和材料对巷道进行加固和保护的过程。这一过程对于确保煤矿开采的安全性、提高开采效率 以及延长巷道使用寿命至关重要。巷道支护不仅能够维持 巷道的稳定性,还能够保障采矿作业人员的生命安全,防 止因巷道垮塌等事故导致的人员伤亡和财产损失。

2.1.2 巷道支护的基本类型与功能

巷道支护技术根据支护材料和结构形式的不同,主要分为锚杆支护、液压支架支护、预制钢筋混凝土支护和U型钢支护等基本类型。这些支护类型各有特色,适用于不同的地质条件和巷道断面。锚杆支护以其成本低、施工方便、支护效果好等优点成为煤矿中最常用的支护形式;液压支架支护则以其强大的支撑力和适应性强等特点,在深部开采和复杂地质条件下的巷道支护中发挥着重要作用;预制钢筋混凝土支护和U型钢支护则以其高强度、耐久性好等优点,适用于需要长期保持巷道稳定性的场合。

2.2 巷道支护的关键技术

2.2.1 锚杆支护技术及其应用

(1)锚杆的选型与参数设计:锚杆的选型需根据巷 道围岩的性质、巷道断面尺寸、开采深度等因素综合考 虑。锚杆的参数设计包括锚杆的长度、直径、锚固方式 等,这些参数的选择直接影响到支护效果。一般来说, 锚杆长度应穿透潜在滑动面,直径应根据围岩强度确 定,锚固方式则根据围岩性质选择机械锚固或化学锚 固。(2)锚杆支护的施工要点与质量控制:锚杆支护的 施工要点包括锚杆孔的定位、钻孔深度与角度的控制、 注浆材料的选用与注浆工艺等。质量控制方面,应确保 锚杆孔的位置准确、注浆饱满、锚杆安装牢固。同时, 还应对锚杆支护进行定期检测和维护,及时发现和处理 潜在问题。

2.2.2 液压支架支护技术及其优势

(1)液压支架的工作原理与结构特点:液压支架的工作原理是通过液压缸的伸缩产生推力,对巷道围岩进行支撑。其结构特点包括顶梁、立柱、底座等关键部件,这些部件能够根据实际需要进行调节和适应。液压支架具有支撑力大、适应性强、操作简便等优点。(2)液压支架在巷道支护中的应用实例:液压支架广泛应用于深部开采和复杂地质条件下的巷道支护。例如,在煤层厚度变化大、地质构造复杂的区域,液压支架能够根据实际情况进行调整,保持巷道的稳定性。此外,在巷道交叉点、拐点等特殊部位,液压支架也能够提供有效的支撑^[2]。

2.2.3 预制钢筋混凝土支护与混凝土支护技术

(1)材料的选用与支护结构设计:预制钢筋混凝土支护与混凝土支护的材料选用需考虑材料的强度、耐久性和经济性。支护结构设计应根据巷道断面尺寸、围岩性质、开采深度等因素综合考虑,确保支护结构的稳定性和承载能力。(2)施工中的注意事项与质量控制:在施工过程中,应注意混凝土的浇筑质量、钢筋的绑扎和焊接质量,以及支护结构的整体稳定性。对于预制钢筋混凝土支护,应确保预制构件的尺寸准确、质量可靠,并在现场进行准确的安装和连接。对于混凝土支护,应严格控制混凝土的配合比、浇筑和振捣工艺,确保混凝土的密实性和强度。同时,应对支护结构进行定期检测和维护,及时发现和处理裂缝、脱落等问题^[3]。

2.2.4 U型钢支护技术的特点与应用

U型钢支护技术具有结构简单、安装方便、承载能力强等特点。U型钢材料具有良好的韧性和塑性,能够适应巷道围岩的变形,保持巷道的稳定性。在煤矿采矿工程中,U型钢支护广泛应用于各种复杂地质条件下的巷道支护。特别是在巷道围岩破碎、地质构造发育的区域,U型钢支护能够发挥其承载能力强、适应性好的优势,有效防止巷道垮塌和冒顶等事故的发生。

2.3 巷道支护的影响因素与优化策略

(1) 巷道围岩性质对支护效果的影响。巷道围岩的 性质是影响支护效果的关键因素之一。不同性质的围岩 对支护结构的要求不同。因此, 在选择支护类型和参数 时,应充分考虑巷道围岩的性质,如岩石的强度、硬 度、节理发育情况等。针对不同类型的围岩, 应采用相 应的支护技术和材料,以确保支护效果。(2)地应力条 件下的支护技术选择。地应力是影响巷道稳定性的重要 因素之一。在地应力较大的区域, 巷道围岩的变形和破 坏风险增加。因此,在选择支护技术时,应充分考虑地 应力的影响。对于高应力区域, 应采用具有强大支撑力 和适应性的支护技术,如液压支架支护或U型钢支护。同 时,还需要结合巷道的地质条件和开采深度等因素进行 综合考虑,确保支护技术的合理性。(3)支护材料与支 护结构的优化选择。支护材料与支护结构的优化选择是 提高支护效果的关键。在选择支护材料时,应充分考虑 材料的强度、耐久性、可加工性和经济性等因素。对于 不同地质条件和巷道断面,应选择适合的支护材料以确 保支护效果。例如, 在软岩巷道中, 应选择具有较好柔 韧性和适应性的支护材料,如U型钢或高强度锚杆;而在 硬岩巷道中,则可以选择刚性较强的支护材料,如预制 钢筋混凝土或混凝土[4]。

3 煤矿采矿工程巷道掘进与支护技术的实践应用

3.1 工程概况与地质条件分析

3.1.1 工程背景与巷道掘进支护需求

在煤矿采矿工程中,巷道掘进与支护是确保采矿作业顺利进行的关键环节。本项目位于某煤矿深部开采区域,巷道掘进长度达数千米,且需穿越复杂地质构造。鉴于巷道所处位置的地质条件复杂,巷道掘进与支护面临诸多挑战,如围岩稳定性差、地应力高、瓦斯含量大等。因此,制定合理的巷道掘进与支护方案,确保巷道稳定性和安全性至关重要。

3.1.2 地质勘探与巷道掘进支护方案的制定

在项目实施前,进行了详细的地质勘探工作,了解了巷道所在区域的地质构造、岩层性质、水文条件等信息。基于地质勘探结果,结合巷道掘进支护需求,制定了针对性的巷道掘进与支护方案。方案考虑了巷道掘进过程中的地质变化,以及支护结构的适应性和承载能力,确保了巷道掘进与支护的顺利进行。

3.2 掘进与支护技术的具体应用

(1)掘进机械的选择与配置。根据项目特点和地质 条件,选择了高效的掘进机械进行巷道掘进。掘进机械 具备良好的破岩能力和适应性,能够应对复杂地质条件 下的掘进作业。同时,根据掘进进度和巷道断面尺寸, 合理配置了掘进机械的数量和类型,确保了掘进作业的 连续性和高效性。(2)支护材料的选用与支护结构的 施工。在支护材料方面,选择了高强度、耐久性好的锚 杆、钢筋网和混凝土等材料。支护结构设计考虑了巷道 围岩的性质和地应力条件,采用了合理的支护参数和结 构形式。施工过程中,严格按照设计要求进行支护材料 的安装和混凝土的浇筑,确保了支护结构的稳定性和承 载能力。(3)临时支护与永久支护的结合应用。为确保 巷道掘进过程中的安全性,采用了临时支护与永久支护 相结合的应用策略。在掘进过程中, 及时安装临时支护 结构, 防止围岩脱落和垮塌。随着掘进进度的推进,逐 步将临时支护替换为永久支护,确保巷道的长期稳定性 和安全性。

3.3 施工监测与安全管理

(1) 巷道掘进施工过程的实时监测。为确保巷道掘 进施工的安全性,采用了实时监测技术对施工过程进行 监控。通过安装传感器和监测设备,实时监测巷道围岩 的变形情况、地应力变化以及掘进机械的工作状态等信 息。一旦发现异常情况,立即采取措施进行处理,确保 了巷道掘进施工的安全顺利进行。(2)瓦斯管理与安 全措施的落实。针对巷道掘进过程中可能遇到的瓦斯问 题,制定了严格的瓦斯管理措施。加强了瓦斯监测和预 警工作,确保了瓦斯浓度在安全范围内。同时,落实了 通风、防尘等安全措施,为施工人员提供了良好的作业 环境。(3)施工中的质量控制与安全隐患排查。在巷道 掘进与支护施工过程中, 注重质量控制和安全隐患排查 工作。定期对施工质量进行检查和评估,及时发现问题 并进行整改。同时,加强安全隐患排查工作,对潜在的 安全风险进行识别和评估,制定了针对性的应对措施, 确保了施工过程中的安全性。

结束语

综上所述,煤矿采矿工程中的巷道掘进与支护技术 是保障矿井安全、提升开采效率的关键。通过综合研究 与应用,我们深刻认识到合理选用掘进方法与支护技术的重要性。未来,随着科技的不断进步,我们应继续 探索更为高效、环保的掘进与支护方案,以适应日益复 杂的地质条件,推动我国煤矿采矿工程向更加安全、高 效、可持续的方向发展。

参考文献

[1]康永强.煤矿采矿工程巷道掘进与支护技术措施[J]. 石油石化物资采购,2023,(05):42-43.

[2] 镡强,李志强.探究煤矿采矿工程巷道掘进与支护技术措施[J].内蒙古煤炭经济,2025,(07):71-72.

[3]王鑫.煤矿采矿工程巷道掘进和支护技术措施研究 [J].当代化工研究,2025,(12):138-139.

[4]杜兴耀.采矿工程巷道掘进与支护技术分析[J].凿岩机械气动工具,2025,(10):110-111.