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Abstract: Carbon capture, utilization, and storage (CCUS) technologies are key solutions to mitigating climate 
change. In recent years, with the advancement of technology, the application of machine learning (ML) in 
optimizing various stages of CCUS technologies has garnered increasing attention. This paper summarizes 
the current status of ML applications in CO2 capture, CO2 enhanced oil recovery, CO2 storage, underground 
sequestration, as well as in the evaluation of the CCUS technologies chain and source-sink matching. It 
explores the use of ML theory to optimize processes such as data collection, model prediction and recognition, 
model parameter adjustment, and result comparison in relation to CCUS technologies. Additionally, a full-chain 
model for CCUS technologies is constructed, and the future directions of ML in CCUS are envisioned. The 
research provides insights to fully harness the potential of machine learning in the CCUS field.
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1. Introduction

Carbon capture, utilization, and storage (CCUS) 
technologies have emerged as key strategies 
for addressing climate change and have 

garnered widespread attention in recent years. With 
the continuous development of CCUS technologies, 
machine learning (ML) has increasingly become 
an essential tool for optimizing the application of 
these technologies. ML focuses on improving system 
performance by utilizing computational methods 
and experiential data. Significant potential has been 
demonstrated in optimizing CO2 capture efficiency, CO2 

enhanced oil recovery (EOR), as well as in monitoring 
underground sequestration and assessing safety. The 
construction of CCUS technologies models involves 
various types of data, including, but not limited to, 
carbon emission intensity and total emissions across 
different geographical regions and time scales, the 
economic evaluation of various CCUS technologies, 
and the estimation of CO2 disposal capacity. These 
data often exhibit complex nonlinear relationships and 
spatiotemporal variability, which require advanced ML 
algorithms for intelligent processing and modeling. 
However, issues such as data quality, integration of 



Engineering Technology Trends

physical and ML models, computational resources, and 
model transparency remain key challenges limiting 
further development.

This paper explores the current status and future 
trends of ML applications in CCUS technologies, 
considering how ML theories can optimize processes 
related to data collection, model prediction and 
recognition, parameter adjustment,  and result 
comparison. The goal is to further enhance efficiency, 
accuracy, and intelligence, thereby promoting 
innovation and optimization in CCUS technologies. 
Additionally, the paper looks forward to the role of ML 
in driving technological advancements in CCUS and 
addressing climate change, providing both theoretical 
foundations and practical guidance for the future 
intelligent optimization of CCUS technologies.

2. The current application of ML in CCUS 
technologies
The unique advantages of machine learning (ML), 
especially in handling complex nonlinear relationships, 
optimizing multi-dimensional variables, and uncovering 
hidden patterns in large-scale datasets, have shown 
great promise across various stages of CCUS. Based on 
a review of recent literature, the application of ML in 
CCUS can be summarized in several key areas.

Firstly, in CO2 capture processes, ML is primarily 
focused on optimizing capture efficiency and predicting 
key parameters in the capture process. For instance, 
supervised learning techniques are used to model the 
physicochemical properties of adsorbents and solvents, 
effectively predicting performance indicators such as 
adsorption capacity, separation efficiency, and energy 
consumption during the capture process[1]. Recently, 
deep learning and neural network-based techniques 
have been applied to predict CO2 behavior in various 
adsorbent materials, further enhancing the accuracy 
and efficiency of the capture process. Additionally, 
surrogate models have emerged as a significant research 
direction in CO2 capture[2]. By training these models 
using ML, high prediction accuracy can be maintained 
while reducing computational costs, thereby facilitating 
efficient optimization of the CO2 capture process.

Secondly, in CO2-enhanced oil recovery (CO2-EOR), 
ML methods have also found widespread applications. 
By analyzing large-scale subsurface exploration data, 
production data, and historical operational data, ML 

models can effectively predict the characteristics of 
oil and gas reservoirs and CO2 injection behavior[3]. 
Algorithms such as Support Vector Machines (SVM) 
and Random Forests (RF) have been used in tasks like 
reservoir modeling, CO2 injection optimization, and 
production forecasting. Furthermore, ML has been 
applied to real-time monitoring of the CO2 injection 
process, enabling the identification of potential issues 
based on downhole pressure, temperature, and other 
data, thus optimizing injection strategies and improving 
the economic efficiency of CO2-EOR[4].

Thirdly, in the fields of CO2 storage and underground 
sequestration, ML is primarily focused on CO2 
migration, storage safety assessment, and leakage 
detection. The flow and distribution of CO2 in 
underground reservoirs are influenced by various 
factors, and traditional numerical simulation methods 
often struggle to rapidly and accurately reflect the 
complexities of subsurface environments. ML, 
especially models like Deep Neural Networks (DNN) 
and Long Short-Term Memory (LSTM) networks, 
has demonstrated strong capabilities in analyzing 
subsurface fluid flow and predicting CO2 migration 
paths[5]. By performing real-time analysis of seismic 
data and downhole monitoring data (e.g., pressure, 
temperature, porosity), ML can identify potential 
leakage pathways and risks, ensuring the safety of the 
sequestration process. In recent years, ML methods 
combined with Bayesian inference have also made 
significant progress in uncertainty analysis during 
sequestration, further improving model reliability and 
predictive accuracy[6].

Finally, ML has shown remarkable potential in 
the evaluation and source-sink matching of CCUS 
technologies chains. By integrating multi-source data 
and applying pattern recognition, ML can optimize 
the matching process between sources and storage 
sites, improving matching efficiency and accuracy, 
particularly when dealing with complex nonlinear 
relationships and dynamic environments[7]. The 
application of deep learning and reinforcement learning 
has further advanced precise prediction and adaptive 
optimization, supporting multi-objective optimization, 
r i sk  a s se s smen t ,  and  dynamic  pe r fo rmance 
adjustments. In the evaluation of the entire CCUS 
technologies chain, ML can help achieve goals such as 
cost minimization and maximization of sequestration 
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efficiency, while also providing quantitative risk 
assessments and continuous monitoring of system 
performance, significantly enhancing the deployment 
efficiency of CCUS across various steps in the 
value chain[8]. As data acquisition technologies and 
algorithms advance, ML is expected to play an 
increasingly critical role in the CCUS field, driving 
the global achievement of emission reduction targets. 
However, challenges such as data quality, algorithm 
transparency, and interpretability need to be addressed 
to ensure the reliability and acceptability of widespread 
applications.

Despite the numerous advantages of ML in CCUS, 
its application still faces several challenges. Firstly, 
issues related to data quality and missing data are 
particularly prominent in CCUS, especially since 
underground data acquisition is constrained by 
monitoring technology limitations, which can lead 
to data bias and inaccuracies during model training. 
Secondly, effectively integrating physical models with 
ML algorithms to create interdisciplinary hybrid models 
remains a critical challenge. Physical models provide 
the theoretical foundation for system behavior, while 
ML discovers hidden patterns through data-driven 
approaches. The fusion of these two approaches holds 
the potential to significantly enhance model prediction 
capabilities and decision-support outcomes. Finally, the 
computational complexity and interpretability issues of 
ML models are key challenges in current applications. 
In large-scale, multi-dimensional CCUS tasks, the 
complex model training and inference processes require 
substantial computational resources, while the "black 
box" nature of these models makes them difficult to 
interpret and validate in practical applications. 

3. ML-Based full Chain model of CCUS 
technologies
In ML applications, there is typically a discrepancy 
between the model's predicted output and the true 
sample values. Minimizing this discrepancy is crucial 
for ensuring that the model accurately reflects the 
actual process. In the application of ML theory to 
carbon emission data, model prediction optimization, 
carbon dioxide sequestration system construction, 
and CCUS source-sink matching, errors between the 
model's output and the actual data are inevitable. 

First, the error of the ML model must be experimentally 

verified, followed by an evaluation and selection process. 
Evaluation metrics include error rate, accuracy, precision, 
recall, and others. Second, for CCUS technologies 
applications in key emission-intensive industries, 
training models based on historical "processing 
experience" data can further improve prediction 
accuracy. Given the complexity of CCUS source-
sink matching, a multi-class learning approach 
can be adopted, breaking the problem into several 
binary classification tasks, where each task trains 
an independent classifier, and the final classification 
decision is obtained by aggregating the predictions of 
the individual classifiers.

Furthermore, neural network models can be trained 
on pre-processed data, adjusting the network's weights 
and biases through multiple iterations to minimize the 
loss function. In this process, evaluating the model's 
performance using test data is an indispensable step. 
Based on the evaluation results, the model can be 
optimized, including adjustments to hyperparameters 
such as the number of hidden layers, neurons, activation 
functions, and optimization algorithms. Additionally, 
to prevent model overfitting, regularization techniques 
and dropout methods can be applied effectively. For 
the dynamic factors in the source-sink matching 
process (such as fluctuations in source production and 
adjustments in sink capacity), the model's performance 
should be periodically assessed, and necessary 
adjustments should be made based on these changes.

In the process of using CCUS technologies to reduce 
carbon emissions in key industries, the first step is 
to collect relevant data on carbon emission intensity 
and total emissions based on the production process, 
as well as internal and remediation cost data related 
to carbon emissions, and the absorption capacity and 
related costs of various carbon sinks. These data types 
are numerous and often incomplete or missing, and 
manual calculations are time-consuming and resource-
intensive. Therefore, based on a ML framework, the 
raw data should first undergo preprocessing, including 
noise elimination, missing value imputation, and data 
normalization. Subsequently, supervised learning 
methods should be used to deeply analyze the existing 
data and construct and optimize carbon emission 
source-sink matching models and carbon dioxide 
sequestration systems for key industries. During the 
evaluation phase, the system's performance will be 
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comprehensively assessed using multidimensional 
metrics such as accuracy, precision, recall, F1 score, 
and AUC-ROC curve. To further improve the model's 
performance, advanced techniques like grid search, 
random search, and Bayesian optimization will be used 
to optimize the model's hyperparameters. Finally, the 
trained CCUS source-sink matching model will be 
deployed in a real production environment to support 
the effective implementation and optimization of 

CCUS projects.
Through the above process,  the application 

effectiveness of CCUS technologies in emissions 
reduction can be enhanced to some extent, promoting 
the optimization of carbon emission management and 
carbon dioxide sequestration in key industries. Figure 
1. illustrates the conceptual diagram of the full-chain 
model for carbon capture, utilization, and storage 
(CCUS) based on ML. 

Figure 1. ML-Based Full Chain Model of CCUS Technologies

4. Development directions of ML in CCUS 
technologies
The application of ML technologies in CCUS is 
advancing rapidly and demonstrating significant 
potential across various domains. As global efforts to 
combat climate change intensify, CCUS has emerged as 
a key emissions reduction technology, and optimizing 
its various stages requires the aid of advanced data-
driven methods. In the future, the research directions 
for ML in CCUS technologies are expected to focus on 
several key areas: 

First, interdisciplinary data fusion and multi-source 
information integration will become central. ML has 

the ability to integrate data from various fields, such as 
geology and environmental science, thereby improving 
the accuracy of source-sink matching and risk 
assessment. Second, real-time dynamic optimization 
and adaptive control will play a pivotal role in source-
sink matching and transportation path optimization. 
Reinforcement learning and online learning methods 
are expected to achieve autonomous optimization of the 
system through interaction with real-time data streams. 

Third, deep learning will be widely applied in 
system-level integration of CCUS. Models such as 
deep neural networks can integrate multi-stage data to 
provide optimized solutions across the entire process 
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and handle complex nonlinear constraints. At the 
same time, the development of Explainable AI (XAI) 
will enhance the transparency and comprehensibility 
of  ML models ,  ensuring their  rel iabi l i ty  and 
societal acceptability in decision-making processes. 
Collaborative optimization and multi-objective 
decision-making will further improve the collaborative 
efficiency of various stages within the CCUS system. 
ML will take into account multiple objectives such as 
cost and sequestration effectiveness, offering balanced 
solutions for different stakeholders. 

Moreover, long-term evolution and system reliability 
prediction will become significant areas of research. 
Time-series deep learning methods will be employed to 
predict long-term changes and potential risks in storage 
sites. Finally, carbon market and policy-driven model 
optimization will provide strategic decision support for 
CCUS systems within the framework of carbon pricing 
and carbon trading mechanisms. 

In summary, ML will play a crucial role in the 
future of CCUS technologies. Through intelligent 
optimization and prediction, ML will drive the efficient 
implementation and sustainable development of CCUS 
technologies, providing strong support for achieving 
global emissions reduction targets.

5. Conclusion
The application of ML in CCUS technologies is 
gradually deepening, offering robust support for 
optimizing various stages of the CCUS process. In 
areas such as CO2 capture, CO2-EOR (Enhanced Oil 
Recovery), and underground storage, ML has enhanced 
system efficiency and predictive accuracy through data-
driven approaches. With the integration of multi-source 
data and interdisciplinary fusion, ML will further 
improve the accuracy of source-sink matching and 
the reliability of safety assessments. Additionally, the 
application of deep learning, reinforcement learning, 
and other techniques will drive real-time dynamic 
optimization and system-level integration of CCUS 
technologies, enabling better responses to complex 
climate change challenges. 

Despite these advancements, issues such as data 
quality, model integration, and computational resources 
remain challenges. Future research should focus on 
addressing these technical bottlenecks while enhancing 
the interpretability and transparency of ML models to 

ensure their broad acceptance and reliability in practical 
applications. Overall, ML will play a vital role in the 
development of CCUS technologies, providing critical 
support for achieving global emissions reduction goals 
and promoting the transition to a low-carbon economy. 
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