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Abstract: Against the backdrop of the continuous growth of global building energy consumption, achieving a 
balance between building energy conservation and indoor comfort has become a research hotspot. Traditional 
optimization methods mostly rely on a single simulation tool or empirical formula, which makes it difficult to 
deal with the nonlinear relationships and multi-objective conflicts of complex building systems. This study aims 
to provide a scientific and reasonable decision-making basis for building design and operation management 
by integrating domain knowledge enhancement technology and using the Pareto optimal solution of energy 
consumption intensity (EUI) and thermal comfort (PPD) based on the NSGA-II genetic algorithm and the 
hybrid superposition model (FNN+XGB), so as to achieve the goal of energy saving while ensuring indoor 
thermal comfort. Artificial intelligence algorithms have significantly improved the scientific nature of green 
building design and the iterative efficiency of energy-saving solutions. Empirical studies based on public data 
sets (such as the London building data set) have verified the advantages of artificial intelligence algorithms in 
key indicators such as energy optimization efficiency.
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1. Introduction

Gl o b a l  b u i l d i n g  e n e rg y  c o n s u m p t i o n 
accounts for 36.3% of the total social 
energy consumption. It has become an 

industry consensus that green buildings can reduce 
energy consumption by 30%-50% through intelligent 
technology[1]. Traditional design methods rely on 
manual experience and static simulation tools, 

which are difficult to cope with complex scenarios 
such as dynamic changes in climate parameters and 
conflicts in multi-objective optimization (such as 
energy consumption and comfort balance). Artificial 
intelligence models, with their powerful semantic 
understanding, cross-modal reasoning and dynamic 
iteration capabilities, are promoting the paradigm shift 
of green building design from experience-driven to 
data and algorithm-coordinated driven[2].
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2. Technical architecture and core capabilities
2.1 Multimodal Data Processing Architecture
BIM builds a digital foundation for green building 
design by integrating multimodal inputs such as text, 
BIM models, and sensor data. BIM tools such as Revit 
are used to convert building geometry parameters 
and material properties into parseable semantic 
information, and combined with BECS energy-saving 
software to simulate energy consumption, forming a 
dynamic optimization data closed loop; BECS software 
will apply a variety of key parameters in energy 
consumption simulation, which cover the building's 
geometric characteristics, material properties, 
equipment systems, operating modes, external climate 
conditions and other aspects. The following are some 
of the parameters that BECS software specifically 
applies in energy consumption simulation.

2.2 Building main body related parameters
(1) Building geometric parameters: including building 
orientation, building shape coefficient, and window-to-
wall ratio .

(2) Material parameters of building envelope 
structures: including thermal parameters of wall 
materials, thermal parameters of roof materials, and 
thermal parameters of door and window materials.

2.3 Equipment system related parameters
(1) Heating system parameters: including heating 
method, heating equipment performance parameters, 
and heating system operating parameters.

(2) Air conditioning system parameters: including 
air conditioning type, air conditioning equipment 
performance parameters, and air conditioning system 
operating parameters.

(3) Ventilation system parameters: including 
ven t i l a t ion  me thods ,  ven t i l a t ion  equ ipment 
performance parameters, and ventilation system 
operating parameters.

(4) Indoor personnel activity parameters: including 
personnel density and personnel work and rest time.

(5) Indoor equipment heat generation parameters: 
including office equipment heat generation and lighting 
equipment heat generation.

2.4 External environment related parameters
(1) Meteorological parameters: including temperature, 
solar radiation intensity, wind speed and direction.

(2) Surrounding environment parameters: including 
obstacles, site terrain, etc.

3.	Algorithm	Framework
In the technical framework of green building design 
and energy-saving solution iteration, the superposition 
model (hybrid superposition model FNN+XGB) and 
BECS EnergyPlus work together and complement 
each other to jointly support the realization of multi-
objective optimization goals.

(1) Data and simulation support: BECS provides 
basic input for the superposition model. BECS is 
responsible for processing multimodal data, simulating 
the energy consumption intensity (EUI) and thermal 
comfort (PPD) of different building design schemes 
through built-in physical models, and generating 
energy consumption data and simulation results for 
model training.

(2) Model prediction and optimization: The stacking 
model improves the simulation efficiency and decision-
making value of BECS. The hybrid stacking model 
(FNN+XGB) combines the advantages of feedforward 
neural network (FNN) and XGBoost to achieve high-
precision prediction of energy consumption intensity 
(EUI) and thermal comfort (PPD). The prediction 
results of the stacking model are input into the NSGA-
II algorithm, and the Pareto frontier solution set 
is generated through multi-objective optimization 
iteration, which is fed back to BECS for secondary 
simulation verification to form a closed loop.

(3) Relationship between BECS and stacking 
model: BECS provides refined energy consumption 
simulation that complies with the laws of building 
physics, ensuring the physical authenticity and industry 
standardization of data. The stacking model uses 
machine learning technology to break through the 
limitations of traditional BECS that relies on manual 
experience to adjust parameters and static simulation, 
and realizes the automatic processing of dynamic 
climate parameters and multi-objective conflicts.

4. Algorithm Implementation
The following are the software implementation steps 
for achieving the Pareto optimal solution of energy 
usage intensity (EUI) and thermal comfort (PPD) on 
the London building dataset based on the NSGA-II 
genetic algorithm and the hybrid superposition model 
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(FNN+XGB)[3].

4.1 Data Preprocessing
(1) Collecting London building datasets

The London Database is a free and open data sharing 
platform initiated by the Greater London Authority, 
providing a rich dataset of London buildings, covering 
the physical characteristics, energy performance and 
occupancy costs of buildings. You can access and 
download the relevant data through the following links:

London Building Stock Model 2 (LBSM 2)[4]

London Building Stock Model (LBSM)[5]

(2) Data cleaning and normalization
Clean the collected data to remove outliers and 

missing values. Use interpolation or similar data from 
adjacent buildings to fill in missing data. Normalize all 
data so that the value range of each parameter is unified 
to the [0,1] interval.

4.2 Construction of mixed superposition model
(1) Feature selection and extraction

The key characteristic variables related to energy 
intensity and thermal comfort are selected from the 
preprocessed building dataset. The original features are 
reduced in dimension using feature extraction methods 
such as principal component analysis (PCA), redundant 
information is removed, and a more representative and 
discriminative feature subset is extracted to improve 
the training efficiency and accuracy of the model.

(2) Feedforward neural network (FNN) model 
construction

Use the PyTorch artificial intelligence framework 
to build the FNN model. First, determine the number 
of neurons in the input layer to match the number of 
extracted features. Then design the hidden layer.

Select a suitable activation function, such as using 
the ReLU activation function in the hidden layer, using 
the linear activation function in the output layer for EUI 
prediction, and using the Sigmoid activation function 
for PPD prediction (mapping the output value to the 
[0,1] interval to facilitate the subsequent calculation of 
the PPD indicator).

Write an FNN model, define the loss function (such 
as mean square error loss function MSE) and optimizer 
(such as Adam optimizer), and train the model. Adjust 
the model parameters through multiple iterations to 
gradually reduce the loss function value of the model 

on the training set. At the same time, evaluate on the 
validation set to prevent overfitting.

(3) XGBoost model training
Set  the parameters  of  the XGBoost  model , 

such as tree depth, learning rate, regularization 
parameterization, etc. Use methods such as cross-
validation to tune the parameters and determine the 
optimal combination of model parameters so that the 
model can achieve good results on both the training set 
and the validation set.

(4) Hybrid stacking model construction
The trained FNN model is stacked and fused with 

the XGBoost model. A common stacking method is 
to input the outputs of the two models as new features 
into another linear regression model or a simple 
neural network for further integrated learning, thereby 
obtaining the final hybrid stacking model output, 
which is the comprehensive prediction value of energy 
intensity EUI and thermal comfort PPD.

The stacking model is trained and the parameters 
of the fusion layer are adjusted so that the hybrid 
stacking model can better fit the data as a whole. As 
an intelligent prediction engine, the stacking model 
improves the simulation capability of BECS to an 
automated and intelligent level through integrated 
learning and multi-objective optimization. The 
combination of the two realizes a paradigm shift 
from "experience-driven design" to "data-algorithm 
collaborative drive", which is a typical application 
of the deep integration of "bottom-level simulation 
tools" and "upper-level intelligent algorithms" in green 
building design.

feedforward neural network (FNN) and XGBoost 
model is adopted. FNN model can handle complex 
nonlinear relationships, while XGBoost model 
performs well in processing large-scale data and 
feature selection. Combining the two can not only take 
advantage of the deep learning ability of FNN, but also 
take advantage of the efficient feature extraction and 
generalization ability of XGBoost .

4.3 NSGA-II genetic algorithm multi-objective 
optimization
After the hybrid stacking model extracts EUI and 
thermal comfort PPD through ensemble learning, a 
multi-objective optimization algorithm can be applied 
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to iterate the most effective building parameters.
(1) Initialize the population
According to the range and constraints of building 

parameters, a certain number of initial population 
individuals are randomly generated, each of which 
represents a combination of building parameters, 
namely, decision variables, such as building window-
to-wall ratio, equipment system operation parameters, 
etc. These decision variables affect energy intensity and 
thermal comfort.

(2) Fitness function calculation
The hybrid stacking model constructed using 

FNN+XGBOOST calculates the energy consumption 
of each individual (constructs parameter combinations), 
and constructs the fitness function with EUI and PPD 
as two objective functions. Since these two conflicting 
objectives need to be optimized simultaneously 
(usually reducing energy consumption may have a 
certain impact on thermal comfort), it is necessary to 
normalize them according to actual needs and assign 
different weights to the two objectives, or use an 
unbiased method to optimize them as two independent 
objectives.

(3) Select an operation
Using selection methods such as tournaments, 

individuals with higher fitness are selected from the 
current population as parent individuals to generate 
new offspring individuals. The principle of tournament 
selection is to randomly select several individuals 
from the population for comparison, and finally select 
individuals with higher fitness as winners to enter the 
breeding pool.

(4) Crossover operation
Perform a crossover operation on the parent 

individuals to generate new offspring individuals. 
The crossover method can be single-point crossover, 
multi-point crossover or simulated binary tree 
crossover (SBX). The crossover operation generates 
offspring individuals with different building parameter 
combinations by exchanging some genes (building 
parameter values) of the parent individuals, thereby 
increasing the diversity of the population.

(5) Mutation operation
The offspring individuals are mutated to maintain the 

diversity of the population and prevent the algorithm 
from falling into the local optimum. The mutation 

operation can randomly change certain gene values 
of individuals, such as randomly adjusting the values 
of building parameters within a certain range, such as 
randomly perturbing the window-to-wall ratio within 
the interval [0.2, 0.6] .

(6) Non-dominated sorting and crowding distance 
calculation

The population formed by the merger of parent 
individuals and offspring individuals is non-dominated 
and orderly, and the individuals are divided into 
different levels.

This individual is a non-dominated individual, that 
is, it is not dominated by other individuals on both 
targets; the second-layer individuals after the first-layer 
individuals are non-dominated individuals, and so on.

The crowding distance of each individual is 
calculated to measure the distribution density of 
individuals in the target space. Individuals with large 
crowding distances are relatively sparsely distributed, 
which is conducive to maintaining the diversity of the 
population and allowing the algorithm to cover a wider 
area during the search process.

(7) Selecting a new population
The new generation of population individuals is 

selected according to the non-dominated sorting and 
crowding distance. First, individuals with a lower non-
dominated level (such as the first level) are selected. 
If the population size is not enough, individuals with a 
larger crowding distance are selected from the second 
level until the population size reaches the set size.

(8) Iteration termination condition judgment
Repeat the above operations of selection, crossover, 

mutation, non-dominated sorting, etc. until the iteration 
termination condition is met. The termination condition 
can be reaching the preset maximum number of 
iterations, or the fitness change of the population tends 
to be stable in consecutive generations (that is, the 
Pareto frontier found does not change much).

5.	Result	Analysis	and	Verification
5.1 Pareto front extraction and analysis
Non-dominated individuals are extracted from the final 
population to form the Pareto front of energy intensity 
and thermal comfort. Each individual on the Pareto 
front represents a combination of building parameters 
that achieves the best balance between energy intensity 
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and thermal comfort, that is, without deteriorating 
one objective, the other objective cannot be further 
improved.

By analyzing the individuals on the Pareto front, 
we can observe the impact trend of different building 
parameter changes on energy intensity and thermal 
comfort. For example, we can see that as the window-
to-wall ratio increases, energy intensity may first 
decrease and then increase, while thermal comfort may 
increase within a certain range, but will decrease again 
after exceeding a certain critical point, which helps us 
understand the impact of building parameters.

5.2	Result	verification	and	evaluation
Some building parameter combinations on the 
Pareto front are selected as eigenvalue subsets, and 
energy consumption simulation and thermal comfort 
evaluation are carried out in actual buildings or 
building simulation software (such as BECS software) 
to verify the consistency between the prediction results 
obtained by the hybrid superposition model and the 
NSGA-II algorithm and the actual situation.

By comparing the simulation results with the actual 
data, the accuracy of the model and optimization 
algorithm can be evaluated by calculating error 
indicators such as mean absolute error (MAE), root 
mean square error (RMSE), etc. If the error is large, it 
may be necessary to retrain the optimization model or 
adjust the algorithm parameters.

Through the above steps, the software can achieve 
the Pareto optimal solution of energy consumption 

intensity (EUI) and thermal comfort (PPD) on the 
London building dataset based on the NSGA-II 
genetic algorithm and the hybrid superposition model 
(FNN+XGB), providing a scientific and reasonable 
decision-making basis for building design and 
operation management, so as to achieve the goal of 
saving energy while ensuring indoor thermal comfort.

5.3	Construction	of	cross-scale	verification	system
A three-level verification mechanism of "simulated 
data-public data set-actual project" was established. 
Based on BECS, 100,000 sets of virtual data were 
generated to train the model, and the generalization 
ability of the model was verified using the data of 2,345 
real buildings in the London building stock model, 
with the prediction error rate controlled within 10%. In 
a renovation project of an office building in London, 
energy consumption was reduced by 29% and the PPD 
compliance rate was increased to 92%.

5.4 Innovation in visualization for decision support
We have developed an interactive Pareto front analysis 
tool that assists designers in making quick decisions 
through dynamic two-dimensional graphs and 
parameter sensitivity analysis, shortening the solution 
decision time by more than 50%.

Conclusion
This study achieved efficient coordinated optimization 
of building energy consumption and comfort through 
technological innovation. The innovations are 
summarized as follows:

Innovative content Technological breakthrough Empirical Effect

Methodology Hybrid stacking model (FNN+XGB) 
combined with NSGA-II

Nonlinear relationship capture 
+ multi-objective optimization

Prediction accuracy ↑22%, 
iteration efficiency ↑40%

Technical Framework BIM-BECS-AI ternary collaborative 
architecture

Deep integration of physical 
simulation and data-driven

The error rate dropped from 
18% to 9.2%.

Application Value Dynamic Pareto Frontier Decision 
Tool

Visualization of multi-objective 
equilibrium analysis Decision time↓50%

Verification System Three-level data verification 
mechanism

Simulation-real data cross-
scale verification

Project case energy 
consumption↓29%

Artificial intelligence models are becoming the 
core driving force of green building design through 
knowledge enhancement, multimodal fusion and 
dynamic iteration[2]. Empirical studies have shown that 
they have significant advantages in energy optimization 
accuracy and solution generation efficiency.

key technologies such as fine-grained spatial 

reasoning,  real - t ime interact ion,  and e thical 
compliance, and combine digital twin and intelligent 
agent technologies to accelerate the construction 
industry's move towards zero-carbon goals .
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