林业生态修复的现状与改进措施

段智全 红河州芷村国有林场 云南 红河州 661199

摘 要:本文分析林业生态修复现状。在技术与应用方面,阐述植被恢复、土壤改良等技术现状及问题;在修复模式与管理体系上,指出单一与混交林模式差异及管理不足;在社会参与与公众意识层面,说明多方协作进展与公众意识局限。同时探讨面临的技术瓶颈、资金资源限制等问题,并提出技术创新、加大投入、完善管理、提升公众认知等改进措施。

关键词: 林业生态修复; 修复技术; 管理机制; 社会参与; 改进措施

引言:林业生态修复对维护生态平衡、促进可持续发展意义重大。随着生态环境问题凸显,林业生态修复工作备受关注。然而,当前林业生态修复面临诸多挑战,在技术应用、资金投入、管理模式及社会认知等方面存在不足。深入分析林业生态修复现状,探寻有效改进措施,对提高修复质量、推动林业健康发展十分必要。

1 林业生态修复的现状分析

1.1 修复技术与应用现状

植被恢复技术是林业生态修复的基础手段。人工造 林凭借精确的苗木选择与种植布局, 在宜林区域广泛应 用,能快速构建森林植被。但受限于人力成本与地形 条件,在偏远复杂山区难以大规模开展。封山育林通过 减少人为干扰,依靠自然演替恢复植被,适合生态条件 较好、具备种子库的区域,不过恢复周期漫长,期间易 受火灾、病虫害威胁。飞播造林借助航空器撒播种子, 作业效率高,可覆盖大面积区域,却对种子萌发条件要 求苛刻,后期幼苗成活率难以保证。土壤改良技术直接 关系生态系统根基。提升土壤肥力常采用有机肥添加与 绿肥种植,能改善土壤结构与养分状况,但效果显现缓 慢,需长期持续投入。水土保持措施中,修建梯田、鱼 鳞坑等工程可有效拦截坡面径流, 防止土壤侵蚀, 然而 这些工程设施的维护成本较高,在缺乏后续管理时,易 因自然侵蚀而失去功效。生物多样性保护技术面临诸多 难题。濒危物种保护依赖迁地保护与就地保护结合,迁 地保护中人工繁育技术虽有突破, 但物种野化放归成功 率低。栖息地重建通过恢复生态廊道与核心栖息地,为 物种提供生存空间,可在实际操作中,重建区域与周边 生态系统的衔接存在困难,难以形成完整生态网络。

1.2 修复模式与管理体系

单一树种与混交林模式对生态系统稳定性影响差异 显著。单一树种造林如速生桉、杉木林,具有生长快、 经济效益明显的特点,但生态功能单一,抵御病虫害 能力弱,易导致土壤养分失衡。混交林模式通过搭配乔 木、灌木、草本植物,形成复杂群落结构,提升物种多 样性与生态系统稳定性, 如针阔混交林可增强碳汇能 力、改善小气候,但混交比例不合理可能引发种间竞 争,影响林木生长[1]。分区分类修复策略依据生态脆弱性 差异制定。在山地生态脆弱区,采用封禁保护与人工补 植结合的方式, 优先选择耐贫瘠、根系发达的树种固土 护坡;干旱半干旱区以耐旱灌木、草本植物为主,配合 集雨工程提升植被成活率; 盐碱地通过耐盐植物种植与 土壤改良剂施用,逐步改善土壤理化性质。然而,部分 区域修复策略缺乏动态调整,未充分考虑气候变化导致 的水热条件变化,影响修复效果。管理体系涵盖规划、 实施与监测评估环节。修复项目规划多基于历史数据与 经验判断,缺乏实时遥感监测与大数据分析支撑,导致 树种选择、空间布局合理性不足。实施过程中,施工队 伍专业水平参差不齐, 苗木采购、种植环节质量管控不 到位,影响成活率。监测评估机制尚不健全,多数项目 仅开展短期成活率统计,缺乏长期生态效益跟踪,如碳 汇增量、生物多样性变化等指标监测滞后,难以及时调 整修复方案。

1.3 社会参与与公众意识

政府主导下的多方协作逐步推进。政府统筹规划与资金,通过生态补偿引导企业参与矿山修复等项目,社会组织则开展技术培训与公众活动。但部门间协调不足,林业、农业等领域修复项目存在重复或空白,影响资源整合效率。公众环保意识提升但参与深度有限。公众对修复重要性认知增强,参与植树等活动积极性提高,但对技术细节与长期效益了解不足,参与方式以被动响应为主,主动参与政策制定与监督的能力较弱。农村地区受传统生产影响,部分居民对生态保护与农业协

调发展认识不足, 毁林开荒等行为增加修复成果维护难度。林业生态修复在技术应用、模式探索与社会参与层面取得进展, 但技术瓶颈、管理粗放与意识局限制约成效。需通过技术创新、管理优化与公众动员, 提升修复的科学性、系统性与可持续性, 实现生态功能与社会需求的平衡发展。

2 林业生态修复面临的问题

2.1 技术瓶颈

林业生态修复技术在复杂生态条件前暴露出明显短 板。常规植被恢复技术于高寒山区难以施展,低温环境 下种子休眠期延长,即便成功播种,幼苗也易遭受冻害 夭折。干旱荒漠地带,普通耐旱树种根系难以穿透坚硬 的沙质土层,即便采用滴灌技术辅助,水分也会因沙土 强渗透性快速流失,导致苗木成活率持续低迷。盐碱地 区域,土壤高盐浓度破坏植物细胞渗透压平衡,多数植 物难以扎根生长,现有的排盐改土技术虽能短期降低盐 分,但难以从根本上改变土壤理化性质,植被重建效果 始终不理想[2]。长期生态效益评估领域也存在诸多空白。 生态修复不仅涉及植被恢复,还涵盖土壤结构改善、生物 链重建等多个维度。但目前缺乏针对不同生态系统的统一 评估标准,难以准确衡量修复措施对生态系统服务功能的 影响。例如,湿地修复后对水质净化能力的提升、森林 生态系统碳汇功能的增强等,都无法通过现有评估手段 得到精准量化,使得修复工作陷入"重建设、轻评估" 的困境,难以依据成效反馈及时调整优化方案。

2.2 资金与资源限制

资金短缺成为制约林业生态修复规模扩张的核心因 素。生态修复项目建设周期往往长达数年甚至数十年, 期间需要持续投入大量资金用于苗木采购、养护管理、 技术研发等环节。由于短期内难以产生直接经济效益, 社会资本普遍持观望态度,仅靠有限的财政拨款难以满 足项目需求。资金不足导致修复工作被迫削减必要环 节, 部分区域简化土壤改良流程, 直接影响苗木后期生 长;监测设备配备不足,无法及时掌握生态系统动态变 化,进一步降低了修复质量与效率。土地资源的紧张局 面加剧了修复工作难度。城市化进程加速与农业生产扩 张, 使得宜林土地资源不断缩减。在生态修复项目选址 时,常面临与建设用地、耕地的用途冲突。部分区域存 在土地权属分散问题,不同主体间协调难度大,导致修 复项目推进缓慢。即便确定修复地块, 部分区域还存在 土壤质量差、地形复杂等问题,需要投入额外成本进行 前期整治,进一步加重资金负担,使得许多潜在修复区 域难以得到有效开发利用。

2.3 管理机制不健全

修复项目规划与实施环节存在明显漏洞。前期调研 阶段, 部分团队对区域生态敏感性认知不足, 未充分考 虑地质条件、气候因素对修复工作的潜在影响。在山 地修复项目中,忽视坡度与坡向对植被生长的影响,盲 目选择不适宜的树种,导致后期苗木成片死亡。部分项 目缺乏对区域生态系统完整性的考量,孤立地开展植被 恢复,忽略与周边生态系统的衔接,无法形成良性生态 网络。监测评估体系的不完善严重阻碍修复工作进程。 传统人工监测方式效率低、误差大,难以覆盖大面积修 复区域。面对突发性生态问题,如病虫害爆发、极端天 气破坏,无法及时发现并采取应对措施。现有的监测指 标单一, 多侧重于植被覆盖率等直观数据, 对土壤微生 物群落变化、生态系统营养结构演变等关键指标关注不 足,难以全面反映生态修复的真实成效,导致问题积累 到严重程度才被察觉, 错失最佳修复时机, 造成资源浪 费与生态损失。

2.4 社会认知不足

公众对林业生态修复的认知偏差显著影响参与热 情。部分人群将生态修复简单等同于植树造林,未意识 到其在维持生物多样性、调节气候、保护水源等方面的 多元价值。这种片面认知使得公众对生态修复工作的认 同感较低,主动参与意愿薄弱。即使部分公众愿意参 与,也常因缺乏专业指导与组织协调,难以发挥实际作 用。社区组织的义务植树活动中,参与者因不了解苗木 种植规范,导致部分树苗间距过密、根系损伤,后期生 长不良。生态修复成果宣传工作存在严重滞后。现有宣 传方式多以传统媒体报道为主,内容停留在项目建设过 程与阶段性成果展示, 缺乏对生态修复背后科学原理、 长期效益的深度解读[3]。新媒体传播渠道未得到充分利 用,难以触达年轻群体与基层民众。宣传内容缺乏故事 性与感染力,无法引发公众情感共鸣,导致社会对生态 修复工作的认知仅停留在表面,未能形成广泛的社会共 识,难以凝聚各方力量共同推进林业生态修复工作。

3 林业生态修复的改进措施

3.1 技术创新与优化

研发适应性修复技术需立足生态脆弱区特性。在干旱半干旱区域,着力培育耐旱抗风沙树种,借助新型保水材料包裹苗木根系,减少水分流失。针对高寒地带,研发低温环境下的种子催芽技术,利用温室培育耐寒幼苗,待其具备一定抗寒能力后移栽。盐碱地修复则聚焦于筛选耐盐植物品种,结合微生物菌剂改良土壤,降低盐分对植物生长的抑制。通过这些针对性技术研发,提

升修复技术在特殊环境下的适用性。推广生态友好型修 复模式是提升生态系统稳定性的重要举措。近自然林业 强调遵循自然演替规律,在森林修复中,依据当地原始 植被群落结构,搭配种植乡土树种,营造多层级的森林 生态系统,增强其抵御病虫害与自然灾害的能力。多功 能林业模式则打破单一生态修复思路,在修复区域发展 林下经济,种植中草药、食用菌等经济作物,既促进生 态恢复,又创造经济收益,实现生态与经济的协同发 展。加强长期生态效益监测需构建科学评估体系。运用 卫星遥感技术定期获取修复区域植被覆盖变化数据,结 合地面采样分析土壤肥力、微生物群落结构等指标,全 面评估生态修复成效。

3.2 加大资金与资源投入

拓宽资金来源渠道需吸引多方力量参与。通过制定 优惠政策,鼓励企业将资金投入生态修复项目,企业可 通过参与植树造林、湿地修复工程,获得相应的税收减 免与政策支持。引导社会资本设立生态修复专项基金, 以市场化运作方式吸纳民间闲散资金。探索生态受益地 区对修复地区的补偿机制,形成稳定的资金流入渠道, 保障修复项目的资金需求。优化土地资源配置要从规划 与整合两方面着手。开展全面的土地资源调查,明确不 同区域的生态适宜性,划定专门的生态修复用地。针对 土地权属复杂的区域,建立协调机制,通过土地置换、 流转等方式整合零散地块,为大型生态修复项目提供连 片土地。在用地布局上,结合地形地貌与生态功能需 求,合理规划森林、湿地等不同类型生态修复区域,提 高土地资源利用效率。

3.3 完善管理机制

科学规划修复项目需以详实的生态调查为基础。组织专业团队对修复区域的地质、气候、生物等要素进行全面评估,分析生态系统受损程度与恢复潜力。在此基础上,制定包含修复目标、技术方案、实施步骤的详细规划,确保修复措施契合当地生态条件。同时注重修复区域与周边生态系统的衔接,构建完整的生态网络^[4]。强化监测评估与反馈调整需建立实时监测系统。在修复区域布设传感器,实时采集土壤湿度、空气质量、生物种群动态等数据,借助物联网技术将数据传输至监测中心。一旦发现数据异常,立即组织专家分析原因,及时

调整修复方案。推动跨区域协作则要打破地域与部门壁 垒,建立信息共享平台,促进不同地区、林业与水利等多 部门在技术、经验方面的交流合作,形成生态修复合力。

3.4 提升社会认知与参与度

加强宣传教育是提高公众环保意识的重要手段。利 用电视、网络等媒体平台,制作专题节目、科普视频, 以通俗易懂的方式普及林业生态修复知识。举办生态 修复主题的公益活动,如生态展览、知识讲座等,让公 众更直观地了解生态修复的重要性。在宣传过程中,注 重讲述生态修复背后的故事,增强内容的感染力与吸引 力。鼓励公众参与是推动生态修复工作的重要力量。建 立志愿者机制, 为公众参与生态修复提供渠道与平台。 组织志愿者参与植树造林、生态监测等活动,并为志愿 者提供专业培训,确保参与活动的质量。还可通过设立 奖励机制,对积极参与生态修复的个人与团体给予表 彰,激发公众的参与热情。建立公众监督机制能确保修 复项目公开透明、高效实施。设立专门的监督渠道, 鼓 励公众对修复项目的资金使用、工程质量等方面进行监 督。定期向公众公布项目进展与资金使用情况,接受社 会监督。对于公众反馈的问题,及时进行调查与处理, 增强公众对生态修复工作的信任。

结束语

林业生态修复是一项长期且复杂的系统工程。尽管 当前在技术应用、模式探索等方面取得一定进展,但仍 面临诸多挑战。通过技术创新、加大资金与资源投入、 完善管理机制以及提升社会认知与参与度等多方面的努 力,有望突破现有困境,提升修复成效,实现林业生态 系统的可持续发展,为人类创造更美好的生态环境。

参考文献

[1]韩占德.林业生态修复的现状与改进措施[J].中国农业文摘-农业工程,2020,32(02):23-24.

[2]保长军.林业生态修复的现状与改进措施[J].花卉,2020(08):212-213.

[3]丁文强.通过林业生态修复实现林业经济的可持续发展[J].花卉,2021(24):156-157.

[4]贾金,张继林.林业生态修复的现状与改进措施[J]. 农家参谋,2022(14):120-122.