山水林田湖草生态保护修复工程设计及施工控制要点

余欣璇

中国市政工程华北设计研究总院有限公司广州分公司 广东 广州 511400

摘 要:山水林田湖草生态保护修复工程旨在通过系统性措施,维护和改善关键生态要素,实现生态环境整体优化。设计要点包括生态优先、系统协调、自然修复为主,注重各生态功能单元平衡。施工控制则需根据边坡坡度等环境条件,选择适宜的植被恢复技术,如人工撒草籽、液压喷播等,并结合生态袋固定、爬藤植被修复等方式。同时,需加强施工管理,确保工程安全与质量,实现生态效益、社会效益与经济效益的和谐统一。

关键词: 山水林田湖草生态保护; 修复工程设计; 施工控制要点

引言:山水林田湖草,作为自然界的瑰宝,是地球上生命繁衍的基石。然而,随着人类活动的频繁与自然环境的恶化,这些宝贵的生态系统正遭受前所未有的挑战。为此,山水林田湖草生态保护修复工程应运而生,旨在通过科学的设计与精细的施工控制,系统性地恢复与提升这些生态要素的功能与稳定性。本文将深入探讨该工程的设计要点与施工控制策略,以期为构建更加和谐、健康的自然生态系统提供有益的参考与借鉴。

1 山水林田湖草生态保护修复工程概述

1.1 定义与分类

1.1.1 生态保护修复工程的基本概念

山水林田湖草生态保护修复工程是基于"山水林田湖草是生命共同体"理念,通过系统性规划与综合技术手段,对受损、退化的生态系统进行修复、治理与保护的工程体系。其核心是打破单一要素治理模式,统筹协调生态系统内各组分间的相互联系,实现生态功能整体提升,维护生态系统稳定性与可持续性,为人类生存发展提供良好生态环境支撑。

1.1.2 山水林田湖草各要素在生态系统中的作用

山是生态系统的骨架,发挥涵养水源、保持水土的基础作用;水是生态系统的血脉,维系生物多样性、调节气候与滋养万物;林是生态屏障,具备固碳释氧、净化空气、防风固沙功能;田是人与自然互动的核心区域,保障粮食安全同时维持农田生态平衡;湖是水资源调蓄枢纽,调节径流、改善区域小气候;草是生态系统的重要植被层,防止水土流失、为动物提供栖息地,各要素相互依存、协同作用,共同构成完整生态系统¹¹。

1.2 修复目标与原则

1.2.1 生态保护修复的主要目标

短期目标是遏制生态系统退化趋势,修复受损生态 功能,如提升水土保持能力、改善水体质量;中期目标 是恢复生态系统自我调节能力,提高生物多样性水平, 实现生态系统良性循环;长期目标是构建稳定、健康、 可持续的生态系统,推动人与自然和谐共生,为经济社 会高质量发展提供持久生态保障。

1.2.2 工程设计的基本原则

遵循系统性原则,统筹各生态要素,避免碎片化治理;坚持自然优先原则,充分发挥生态系统自我修复能力,减少人工干预对自然的破坏;秉持因地制宜原则,结合区域生态现状、气候条件与人文特征,制定差异化修复方案;恪守可持续原则,平衡生态保护与经济社会发展,确保工程效益长期稳定。

2 山水林田湖草生态保护修复工程设计要点

2.1 工程规划与设计流程

(1) 宏观问题识别与诊断。通过遥感监测、实地踏 勘与数据分析,全面识别区域生态系统存在的宏观问 题。重点排查山水林田湖草各要素的受损状况,如山地 是否存在水土流失、森林是否面临植被退化、湿地是否 出现面积萎缩、草地是否存在沙化、水体是否存在污染 等。结合气候数据、土壤样本检测结果及生物多样性调 查情况,诊断问题根源,例如水体污染需明确是农业面 源污染、工业废水排放还是生活污水导致, 为后续设计 提供精准问题导向。(2)总体保护修复目标制定。依据 问题诊断结果,结合区域生态功能定位与可持续发展需 求,制定总体保护修复目标。目标需兼顾生态、社会与 经济多重效益,且量化可衡量,如"3年内实现项目区水 土流失治理率达85%以上""5年内使湿地生物多样性提 升20%""通过修复带动周边区域生态旅游收入年均增 长15%"等。同时,目标需分阶段设置短期、中期与长 期节点,确保修复工作有序推进,避免目标模糊导致设 计方向偏差。(3)保护修复单元与工程子项目布局。根 据生态系统完整性与地域关联性, 划分保护修复单元,

如按流域划分山地-河流-湿地一体化修复单元,按地貌特征划分森林-草地协同修复单元。在单元内合理布局工程子项目,遵循"先急后缓、重点突出"原则,例如在水土流失严重的山地单元,布局梯田修筑、植被固土等子项目;在水体污染单元,布局水质净化、生态护岸建设等子项目。同时,确保子项目间相互衔接,形成修复合力,如湿地修复子项目需与周边河流治理子项目协同,保障水源补给与水质循环^[2]。

2.2 关键生态系统要素修复设计

(1)山地生态系统保护与修复策略。针对山地生态 问题,采用"固土+植被+监测"综合策略。坡度较缓区 域,设计鱼鳞坑、水平阶等水土保持工程,搭配种植耐 旱、固土能力强的乡土树种;坡度较陡区域,采用锚杆 格构梁支护技术,结合喷播绿化恢复植被。同时,在山 地关键节点设置土壤含水量、水土流失量监测站点,实 时调整修复措施,防止二次生态破坏。(2)森林生态系 统恢复与重建方法。优先选用乡土树种开展森林植被恢 复,根据不同海拔与土壤条件设计乔灌草混交模式,如 低海拔区域搭配阔叶树与灌木, 高海拔区域种植耐寒针 叶树。对于退化严重的林地,采用人工造林与天然更新 相结合的方式,保留原生植被作为天然苗源地。设计森 林抚育管理方案,明确间伐强度、除草周期与病虫害防 治措施,促进森林生态系统正向演替。(3)湿地生态系 统保护与生态功能提升。通过退塘还湿、水系连通等工 程,恢复湿地原有水域面积与水文节律。设计湿地植被 群落,选择芦苇、香蒲等水生植物构建挺水植物带,搭 配眼子菜等沉水植物,形成完整的湿地植被生态链,提 升水体净化与蓄水调洪功能。同时,在湿地周边设置生 态缓冲带,种植耐湿乔木,减少周边人类活动对湿地的 干扰。(4)草地生态系统恢复与管理。针对草地沙化、 退化问题,采用围栏封育与人工补播相结合的方式,选 择羊草、针茅等原生草种进行补播,避免引入外来物种 引发生态入侵。设计合理的载畜量控制方案,推行轮牧 制度, 防止过度放牧导致草地再次退化。在干旱半干旱 草地区域,设计雨水集蓄设施,搭配滴灌技术,保障草 地植被生长水分需求。(5)水体生态系统净化与生态修 复。构建"控源截污-水质净化-生态修复"三级治理体 系。在河流上游设置截污管网,拦截生活与工业污水; 中游布局人工湿地、生物滤池等水质净化工程,通过微 生物与水生植物降解污染物;下游设计生态护岸,采用 石笼、植草混凝土等材料, 替代传统硬质护岸, 为水生 生物提供栖息地。同时,投放适宜的鱼类、底栖生物, 恢复水体生态链,提升水体自净能力[3]。

2.3 生态廊道与景观优化设计

(1)生态廊道的构建与连接。根据生物迁徙路径与 生态系统连通需求,设计线性生态廊道,如沿河流、道 路两侧构建植被廊道, 宽度需满足中小型动物迁徙需 求,一般不小于50米。选用乡土树种与灌木构建乔灌草 复合植被结构,确保廊道具备食物供给与隐蔽庇护功 能。同时, 打通断裂的生态廊道节点, 如在公路下方建 设动物通道,保障生态廊道的连续性,促进不同区域 生物交流与基因流动。(2)景观美化与生态多样性保 护。在景观设计中融入生态美学理念,通过植被色彩搭 配、地形微改造打造自然和谐的景观效果, 如在湿地周 边种植季节性花卉,形成四季有景的视觉体验。同时, 兼顾生态多样性保护,保留自然形成的坑塘、灌丛等微 生境,为鸟类、昆虫等提供栖息场所。避免过度人工雕 琢,确保景观美化不破坏生态系统的自然属性,实现景 观价值与生态功能的统一。(3)人文景观元素的融入 与生态旅游价值提升。挖掘项目区域的历史文化、民俗 风情等人文元素,将其融入景观设计,如在生态廊道沿 线设置文化标识牌,介绍当地传统农耕文化与生态保护 历史; 在湿地周边建设民俗文化驿站, 展示传统手工艺 品制作过程。同时, 合理规划生态旅游路线, 设置徒步 道、观景台等设施,严格控制旅游容量,避免过度开 发。通过"生态+文化+旅游"融合设计,提升项目生态 旅游价值,实现生态保护与经济发展的良性互动。

3 山水林田湖草生态保护修复工程施工控制要点

3.1 施工技术选择与优化

(1)适宜性评估与技术方案制定。施工前需结合项 目区域生态特征、修复目标及工程条件, 开展技术适宜 性评估。通过实地试验、模拟分析等方式,判断技术是 否匹配当地环境,例如在土壤贫瘠的山地,评估客土改 良技术与原生土修复技术的适用性;在富营养化水体区 域,对比生物浮岛与底泥疏浚技术的治理效果。基于评 估结果制定技术方案,明确技术参数与实施流程,如湿 地植被种植技术方案需确定苗木规格、种植密度及后期 养护周期,确保技术方案科学可行,避免因技术不适导 致修复效果不佳。(2)新技术、新材料的应用与推广。 积极引入生态友好型新技术,如无人机播种技术可提高 山地、大面积草地的植被种植效率,遥感监测技术能实 时追踪施工区域生态变化;推广环保新材料,如可降解 生态袋用于边坡防护,替代传统塑料沙袋减少环境污 染, 生物炭改良剂用于土壤修复, 提升土壤肥力与保水 能力。同时建立新技术、新材料应用评估机制, 跟踪应 用效果,总结经验并推广至同类项目,推动工程施工技

术升级。

3.2 施工过程管理

(1)工程质量与进度控制。建立全过程质量管控体 系,明确各施工环节质量标准,如山地梯田修筑需确保 田埂高度、坡度符合设计要求,水体净化设施安装需严 格把控接口密封性。通过现场巡检、第三方检测等方 式,及时发现并整改质量问题,杜绝不合格工程。制定 详细进度计划,分解施工任务至每周、每日,合理调配 人力、设备与材料, 如在植被种植黄金期集中投入人 力,确保按时完成种植任务。针对施工延误风险,制定 应急预案,如遇恶劣天气提前储备物资,保障工程按计 划推进。(2)施工现场环境管理与生态保护。划定施 工区域与生态敏感区边界,设置隔离护栏、警示标识, 禁止施工活动侵占敏感区域,如湿地核心区、珍稀动植 物栖息地。施工过程中采取降尘、降噪、控污措施,如 使用洒水车降尘、选用低噪音设备、设置临时污水处理 设施,避免污染土壤、水体与空气。妥善处理施工废弃 物,建筑废料分类回收利用,生活垃圾集中清运处理, 减少对周边环境影响。同时加强施工人员生态保护意识 培训,禁止破坏原生植被、捕捉野生动物,最大限度降 低施工对生态系统的扰动[4]。

3.3 风险评估与应对策略

(1)生态风险评估方法。采用定性与定量结合的评估方法,识别施工可能引发的生态风险,如植被种植后遭遇病虫害、水体修复过程中水质反弹、生态廊道构建后生物入侵等。通过生态模型模拟风险发生概率与影响程度,例如利用水质预测模型评估施工废水排放对水体生态的潜在风险,结合历史数据与现场监测结果,确定

风险等级,为风险防控提供依据。(2)应急响应机制与风险防控措施。建立完善应急响应机制,明确风险预警阈值、应急组织机构与处置流程,如当监测到水体污染物浓度超过预警值时,立即启动应急程序,停止相关施工并采取治理措施。针对不同风险制定防控措施,病虫害风险可提前投放生物防治天敌、定期喷洒环保农药;生物入侵风险需严格检疫引入的植物物种,加强施工区域外来物种监测;极端天气风险需提前加固施工设施,做好防汛、抗旱准备,确保工程安全与生态稳定。

结束语

综上所述,山水林田湖草生态保护修复工程,承载着我们对美好自然环境的向往与追求。通过细致的设计与严谨的施工控制,我们致力于恢复生态系统的原貌与活力,为生物多样性提供庇护。面对未来,我们需持续优化设计理念,提升施工技术,确保工程效益最大化。让我们携手努力,共同守护这片绿水青山,为实现人与自然和谐共生的美好愿景贡献力量,让地球家园焕发更加蓬勃的生机与活力。

参考文献

- [1]罗聪.山水林田湖草生态保护修复工程研究[J].建筑技术科学,2023,(08):78-79.
- [2]赵娜,杨勇.山水林田湖草生态保护修复工程控制性规划研究[J].建筑理论,2021,(09):91-92.
- [3]王子珍.浅论泰安市山水林田湖草生态保护修复工程实践[J].市政工程,2020,(10):105-106.
- [4]黄星.山水林田湖草生态保护与修复工程动态监测技术研究[J].电力系统及自动化,2024,(05):60-61.