BIM技术在建筑结构设计中的应用

赵 兵

中国电建集团北京勘测设计研究院有限公司 北京 100024

摘 要:BIM技术在工程管理中的意义主要体现在优化建筑工程管理模式、获得更多经济效益和提高工程造价管理水平。通过BIM技术,可以实现全面协同、动态调整、风险管理、时间和资源优化等优点,提高工程管理的效率和质量。同时,BIM技术也有利于减少误差和返工、提高施工效率、有效管理变更以及提高项目投资回报率。在工程造价管理方面,BIM技术可以有效地进行项目预算、优化供应链管理、变更管理和成本控制,实现对工程造价的精细管理和绩效评估。通过BIM技术的应用,可以推动工程管理的数字化转型和可持续发展。本文从BIM技术主要特征入手,分析BIM技术在工程管理中的意义以及BIM技术在建筑结构设计的具体应用,以供参考。

关键词: BIM技术; 建筑; 结构; 设计; 应用

前言:建筑信息模型是一种集成的数字化建筑设计和管理方法,通过软件工具创建、协调和可视化建筑项目的各个方面。BIM技术的主要特征包括可视化特征、模拟性特征和优越性特征。这些特征使BIM成为一种强大的工具,可以提供高度可视化的建筑信息、进行模拟和分析,提高设计和施工的效率和质量。通过BIM技术的应用,可以实现设计、建造和运维过程的优化,推动建筑行业的数字化转型和可持续发展。

1 BIM 技术主要特征

1.1 可视化特征

BIM技术的一个重要特征是其能够提供高度可视化的建筑信息。BIM利用三维建模技术创建建筑模型,使设计师、建筑师、工程师和其他相关人员可以在虚拟环境中查看和操作建筑模型。这种三维可视化的特性使得各方能够更好地理解和分析建筑设计,尽早发现和解决潜在的问题。BIM允许建筑的各个组成部分在虚拟环境中进行精确的空间协调,避免了传统2D图纸在空间协调方面存在的困难。利用BIM可以更容易地检测并解决可能的冲突,提高工程的精度和效率。BIM可以生成各种可视化报告、图表和动画,使设计师和建筑团队能够更清晰地与业主、承包商和其他利益相关方交流,共同讨论和决策^[1]。

1.2 模拟性特征

BIM技术在建筑设计和管理过程中具有模拟性特征,可以提供更全面的信息模拟和分析。BIM整合了建筑项目的各类数据,包括几何数据、材料和构件属性、施工工

通讯作者:赵兵,1978年11月,汉族、男,河北承德,中国电建集团北京勘测设计研究院有限公司,办公室主任,高级工程师,本科,100024,信息管理数字化方向。

艺和进度等信息。这些数据的集成为模拟和分析提供了坚实的基础。BIM可用于进行各种分析,如结构分析、能源分析、照明分析等。通过模拟和分析,可以评估建筑方案的可行性和性能表现,减少改动成本和潜在的风险。BIM可用于进行冲突检测,通过对构件和管道等元素进行碰撞检查,减少设计中的冲突和错误。这样可以提前发现并解决问题,降低项目变更和返工的成本^[2]。

1.3 优越性特征

BIM技术具有许多优越性特征, 可以提高设计和建 造过程的效率和质量。BIM极大地促进了各个参与方的 协同工作。通过共享建筑模型,不同专业的团队成员可 以同时协同工作,迅速交流和共享信息,提高效率和协 调性。BIM可以对项目的进度和时间进行详细的规划和 控制。通过模拟和分析,可以预测项目的进展和资源需 求,及早发现潜在的延误因素,并采取相应的措施[3]。 BIM可以对项目的成本进行详细的预测和控制。通过与其 他建筑组成部分进行数值模拟和协调, 可以更准确地估 计和管理项目的成本,及时发现和解决潜在的成本超支 问题。BIM建立了一个集中管理和共享建筑信息的平台。 通过统一的数据模型和数据库,所有参与方可以高效地 共享和管理项目信息,确保信息的一致性和准确性。BIM 可以配合可持续设计原则,对建筑的能源效率、碳排放 等方面进行模拟和分析, 为优化设计和选择可持续性解 决方案提供支持[4]。

2 BIM 技术在工程管理中的意义

2.1 有利于优化建筑工程管理模式

BIM技术为建筑工程管理带来了重大的革新。它提供了全面、动态、可视化的建筑信息模型,有利于优化建筑工程管理模式。BIM技术可以实现项目各方之间的高

效协同工作,促进项目信息的共享与沟通。设计师、工 程师、承包商和其他利益相关方可以在同一个平台上共 同参与建筑项目的规划、设计、施工和维护。这消除了 信息孤岛,提高了团队之间的合作和沟通效率。BIM模 型可以在不同的设计阶段和施工阶段随时更新和调整, 为项目管理人员提供实时的工程数据和信息,帮助他们 做出更准确的决策。通过多维模拟和分析功能,可以更 好地预测和解决潜在问题,及时调整设计和施工计划[5]。 BIM技术可以帮助工程管理人员更好地识别和管理项目风 险。通过模型的可视化和数据分析,可以及时发现潜在 的冲突和错误,降低项目变更和返工的风险,提高项目 的质量和安全性。BIM技术可以实现建筑项目的全流程管 理和优化。通过模型的模拟和分析功能,可以合理安排 资源和人力,优化工程进度,减少浪费。此外,BIM技术 还可以提供详细的工程量清单和材料管理,帮助管理人 员更好地控制项目的成本和供应链。

2.2 有利于获得更多的经济效益

BIM技术不仅可以优化建筑工程管理模式,还有助于 获得更多的经济效益。BIM技术可以减少人为的误差和建 筑设计的不一致性。通过模型的可视化和协同工作,可 以及早发现潜在问题,减少修改和重新施工的需要。这 将大大降低建筑项目的成本和风险。BIM技术可以提高 施工过程的效率和准确性。通过模拟和计划功能,施工 人员可以预测并优化施工过程,减少不必要的等待和浪 费,提高资源利用率。模型的可视化特性还可以提供更 清晰的工作指导,减少施工错误和误解。BIM技术可以 更好地管理设计变更和工程变更。通过模型的实时更新 和版本控制,可以迅速反应和调整设计变更要求或施工 变更需求。这能够避免耗费大量时间和资源来重新绘制 图纸和协调变更事项,从而提高变更管理的效率和精确 性。BIM技术有助于提高建筑项目的质量、效率和可持续 性,从而增加项目的投资回报率。通过精确的预测和优 化设计和施工过程,可以减少项目延期和额外成本,提 高项目的整体绩效和经济效益。

2.3 有利于提高工程造价的管理水平

BIM技术在工程造价管理方面也具有重要的意义。 BIM技术可以生成详细的工程量清单和材料管理,帮助管理人员制定准确的项目预算。通过与模型相关联的成本数据,可以提供更准确的成本估算,并为工程造价管理提供基础。BIM技术可以实现材料和设备的管理和优化,提高供应链管理的效率。通过模拟和预测功能,可以精确规划和协调供应链的安排,减少库存和运输成本,提高物资的供应效率。BIM技术可以更好地管理设计变更和 施工变更,避免因变更而引发的额外成本。通过及时发现、分析和评估变更的成本影响,可以采取相应的措施来控制成本,并为合同的索赔和谈判提供支持。BIM技术提供了全面的数据和信息,使管理人员能够对工程造价的绩效进行评估和监控。通过对比实际成本和预算成本的差异,可以及时发现并解决潜在的成本异常,实现对工程造价的精细管理和控制。

3 BIM 技术在建筑结构设计中的应用

3.1 BIM技术在工程图纸设计中的应用

BIM技术的应用不仅仅局限于工程图纸设计,它也在 施工、施工管理和设备运维等方面发挥着重要的作用。 在施工阶段,BIM技术可以将设计模型与施工进度进行整 合,帮助项目管理人员更好地监控施工进展,及时发现 和解决问题,确保项目按时、按质量完成。在施工管理 方面, BIM技术可以用于资源管理和物料预测, 帮助管理 人员合理规划和调配资源,提高施工效率和成本控制。 在设备运维方面, BIM技术可以用于建筑设备的管理和维 护,通过建立数字模型和数据化管理系统,实现设备的 远程监控和故障诊断,减少设备故障和停机时间,提高 设备运行效率和维护效果。然而,尽管BIM技术在建筑 行业的应用前景广阔,但是目前仍然存在一些挑战和障 碍。首先, BIM技术的推广和应用需要建筑行业各方的共 同努力和支持。政府、设计机构、施工单位和设备供应 商等各个环节都需要意识到BIM技术对于行业发展的重要 性, 并积极推动BIM技术的应用。其次, BIM技术的应用 还需要建筑行业的人才储备和技术培训。

3.2 BIM技术在建筑空间设计中的应用

BIM技术还可以通过能源模拟和分析来优化建筑空 间的能源利用效率。设计师可以对建筑模型进行能源模 拟,分析不同方案下的能耗情况,以此指导设计决策, 选择更加节能环保的设计方案。BIM技术还可以将建筑空 间与设备系统进行集成,实现空调、照明等设备的智能 化控制,进一步提高能源利用效率。BIM技术还可以通过 协同设计和信息共享的方式提升建筑空间设计的效率和 准确性。设计团队的各个成员可以通过共享BIM模型,实 时交流和协作,减少沟通成本和错误率。设计团队的每 个成员都可以在BIM模型中完成自己的设计工作, 然后进 行整体模型的集成和协调,确保建筑空间的设计方案的 一致性和完整性。BIM技术还可以通过数据管理和维护的 方式,实现建筑空间的长期管理和优化。在建筑物交付 后,BIM模型可以作为建筑空间的基础数据,用于进行后 续的维护和管理。利用BIM技术,可以实时更新建筑空间 的使用情况和设备运行状态,有助于进行定期的维护和 故障排除。

3.3 BIM技术在建筑结构参数设计中的应用

BIM技术在建筑结构参数设计方面的应用主要涉及BIM技术可以与结构分析和优化软件集成,对建筑结构的参数进行优化设计。通过多次模拟和分析,结构设计师可以调整不同参数,找到最优的结构方案,提高结构的性能和效益。BIM技术可以进行荷载分析,包括风荷载、地震荷载、雪荷载等。通过模拟和分析,可以预测和评估不同荷载情况下的结构响应,以确定合理的结构设计方案。BIM技术可以进行参数敏感性分析,通过改变建筑结构的参数,如截面尺寸、材料性能等,来评估其对结构性能的影响。这有助于确定哪些参数对结构设计至关重要,并进行相应的优化调整。BIM技术可以将建筑结构以三维模型或图表的形式进行可视化展示。通过直观的展示方式,结构设计师可以更好地理解和分析结构的参数及其影响,从而做出合理的选型和调整。

3.4 BIM技术在钢结构模型创建中的应用

BIM技术在钢结构模型创建方面的应用主要包括BIM 技术通过集成钢材数据库,可以帮助设计师进行钢材的 选择和管理。设计师可以根据建筑结构参数、荷载要求 等,自动获取钢材的规格、重量和价格等信息,提高钢 材的选型和使用效率。BIM技术可以进行钢结构的连接设 计和优化。通过模拟和分析,可以评估不同连接方式对 结构性能的影响,并选择最合适的连接方式,提高钢结 构的稳定性和安全性。BIM技术可以实现钢结构的构件设 计和布局。设计师可以在BIM模型中选择和调整不同构件 的位置、尺寸和形状,进行构件设计的优化和布局的调 整,以满足结构设计和施工的要求。

3.5 BIM技术在建筑结构性能分析中的应用

BIM技术在建筑结构性能分析方面的应用主要涉及 BIM技术可以进行结构荷载分析,包括静载荷、动态荷载、温度荷载等。通过模拟和分析,可以评估不同荷载 条件下结构的响应和变形情况,为结构设计和优化提供参考。BIM技术可以进行结构的稳定性分析,评估结构在不同荷载条件下的稳定性。通过模拟和分析,可以判断结构是否存在严重的稳定性问题,采取相应的措施进行优化设计。BIM技术可以进行结构的动力响应分析,评估结构在地震、风等动力荷载下的响应情况。通过模拟和分析,可以预测结构的振动频率、模态形态和随机响应等,为结构的抗震设计提供指导。BIM技术可以进行结构的耐久性分析,评估结构在气候、环境和时间的作用下的耐久性能。通过模拟和分析,可以预测结构的腐蚀、疲劳和老化等问题,采取相应的防护和维护措施。

结语:建筑信息模型技术在建筑结构设计中有着广泛的应用。它通过数字化建模和数据集成的方式,提供了全面、协同和可视化的建筑信息,为结构设计师提供了强大的工具和平台。以下将详细介绍BIM技术在建筑结构设计中的应用,包括在工程图纸设计、建筑空间设计、建筑结构参数设计、钢结构模型创建和建筑结构性能分析等方面。

参考文献

[1]周虹丽. 基于BIM技术的高层建筑钢结构节点布局 优化设计方法[J]. 工程建设与设计,2023,(10):73-75.

[2]陈云鹏. 基于BIM技术的高层建筑结构设计应用[J]. 住宅与房地产,2023,(14):68-70.

[3]周虹丽. 基于BIM技术的装配式建筑钢结构施工现场布局可视化设计方法[J]. 散装水泥,2023,(02):188-190.

[4]张飞,蒋吉方,吴发红. 基于产学合作协同的BIM建筑结构设计实践基地建设[J]. 产业创新研究,2023,(06):196-198

[5]潘存瑞,吴星蓉,周磊,魏宏亮. BIM技术在装配式钢结构建筑设计及施工中的应用[J]. 中国建设信息化,2023,(05):62-65.