隧道防排水施工技术研究

李 *磊* 重庆工贸职业技术学院 重庆 408000

摘 要:隧道防排水是保障隧道工程安全和延长使用寿命的关键环节。设计原则包括"防"、"排"、"截"和"堵",分别通过预防渗水、有效排水、截断水源和封堵裂隙来实现。关键技术如补充注浆堵水、施工缝与变形缝防水、涌水段防排水以及二次衬砌防水等,对于解决复杂地质条件下的防排水问题至关重要。本文详细探讨了这些技术的实施方法和应用效果,旨在为隧道防排水施工提供科学指导和技术参考。

关键词: 隧道工程; 防排水; 施工技术

引言

隧道工程作为基础设施建设的重要组成部分,其安全性和耐久性直接关系到国家经济发展和人民生命财产安全。隧道施工过程中,地下水的存在往往给工程带来诸多挑战,如涌水、渗漏等问题,影响施工进度,还对隧道结构造成损害。因此,深入研究隧道防排水施工技术,对提高隧道工程的安全性和耐久性具有重要意义。本文将从隧道防排水的重要性、设计原则以及施工中的关键技术等方面进行阐述,以期为相关领域的研究和实践提供有益的参考。

1 隧道防排水的重要性

隧道工程在修建过程中,往往会破坏山体原始的水 系统平衡, 使隧道成为地下水集聚的通道。当隧道与含 水地层连通,而衬砌的防水及排水设施不完善时,就 会发生隧道水害。隧道渗漏水会导致隧道内设备腐蚀、 降低结构使用寿命,还会危及行车安全,整治难度大且 成本高。因此,隧道防排水工作的重要性不言而喻。隧 道是城市交通和山区交通的重要组成部分, 其安全运营 关系到公共安全和经济发展。隧道内的水害问题,如渗 漏、积水等,会严重影响隧道的使用功能和安全性。渗 漏水导致隧道内路面湿滑,增加车辆行驶的风险;积水 对隧道结构造成侵蚀,缩短其使用寿命。渗漏水还能引 发隧道内的电气设备故障,影响隧道的正常运营;隧道 防排水工作对于保护环境也具有重要意义。隧道施工过 程中, 如果不采取有效的防排水措施, 能导致地下水位 下降、地表植被枯萎等生态环境问题。同时,隧道运营 过程中产生的废水如果未经处理直接排放, 也会对周边环 境造成污染。总的来说,隧道防排水工作对于保障隧道的 安全运营、延长使用寿命、保护环境和促进经济发展都具 有重要意义。因此,隧道设计和施工过程中,防排水问题 必须被置于极其重要的地位。为确保隧道的长期安全和 稳定,须采取科学、有效的防排水措施,从源头上控制水的渗透,为隧道的顺畅通行提供坚实的保障。

2 隧道防排水设计的原则

2.1 "防"的重要性及措施

(1)通过防水混凝土、防水板等防水材料,阻隔地 下水进入隧道内部,能保护隧道结构不受水的侵蚀。防 水混凝土具有良好的抗渗性能,其合理的配合比设计和 施工工艺控制,能在混凝土内部形成致密的结构,阻止 地下水的渗透。(2)防水板的应用也是关键措施。防水 板通常采用高分子材料制成,具有良好的柔韧性和防水 性能。隧道施工中,将防水板铺设在初期支护和二次衬 砌之间,能形成有效的隔水屏障,防止地下水渗入隧道 内部。实际施工时,确保防水效果,要注意以下几点: 保证防水材料的质量,选择符合国家标准和工程要求的 防水混凝土和防水板,对材料进行严格的质量检验,确 保其性能稳定可靠;加强施工过程中的质量控制,防水 混凝土的浇筑要连续、均匀, 避免出现裂缝和蜂窝麻面 等质量问题。防水板的铺设要平整、牢固, 搭接处要密 封严密, 防止出现漏水点; 做好防水系统的保护, 隧道 施工过程中, 要避免对防水系统造成破坏, 如避免机械 碰撞、电焊火花等对防水板的损伤。

2.2 "排"的作用及实现方式

通过设置排水盲管、排水沟等排水设施,将地下水及时排出隧道外部,减轻地下水对隧道结构的压力,保证隧道的稳定性。排水盲管通常设置在初期支护和防水板之间,用于收集地下水并将其引导至排水沟。排水沟则设置在隧道底部或两侧,将地下水排出隧道。第一,排水盲管的设置要合理。根据隧道的地质条件和地下水情况,确定排水盲管的间距、直径和坡度等参数,确保地下水能够顺利流入排水盲管。第二,排水沟的设计要科学。排水沟的尺寸要满足排水要求,坡度要适当,避

免出现积水现象。定期对排水沟进行清理和维护,确保排水畅通。第三,一些特殊情况下,可以采用其他排水方式。对于富水地区的隧道,采用井点降水等方法,降低地下水位,减少地下水对隧道的影响,采用排水隧洞等方式,将地下水引至隧道外部,提高排水效果¹¹。

2.3 "截"的意义及实施方法

"截"是指在隧道施工范围外,通过地表排水工程,将地表水截流,防止其进入隧道施工区域。地表水的渗入是导致隧道水害的重要原因,做好地表截水工作对于隧道防排水至关重要。(1)进行详细的地质勘察和水文调查。了解隧道周边的地形地貌、水系分布和地下水情况,确定地表水的来源和流向。(2)根据勘察结果,设计合理的地表排水工程。地表排水工程通常包括截水沟、排水沟、沉砂池等设施。截水沟设置在隧道洞口上方和山坡上,用于拦截地表水,防止其流入隧道施工区域。排水沟将截水沟中的水引至安全地带排放。沉砂池用于沉淀水中的泥沙,防止其堵塞排水设施。(3)施工过程中,要严格按照设计要求进行地表排水工程的施工过程中,要严格按照设计要求进行地表排水工程的施工。确保截水沟、排水沟的坡度和尺寸符合要求,施工质量可靠。定期对地表排水工程进行检查和维护,及时清理淤积物,保证排水畅通^[2]。

2.4 "堵"的必要性及技术手段

在地质条件复杂、地下水丰富的地区,单纯依靠 "防、排、截"措施可能无法完全解决隧道水害问题, 此时就需要采用"堵"的方法。注浆是一种常用的堵水 技术。向地层中注入水泥浆、化学浆液等材料,填充地 层中的孔隙和裂缝,形成隔水帷幕,阻止地下水的流 动。注浆的效果取决于注浆材料的选择、注浆工艺的控 制和注浆参数的确定。(1)要根据地质条件和地下水 情况选择合适的注浆材料。水泥浆具有成本低、强度高 的优点,细小裂缝的封堵效果较差。化学浆液则具有较 好的渗透性和胶凝性,能封堵细小裂缝,但成本较高。 (2)要严格控制注浆工艺。注浆过程中要控制注浆压 力、注浆速度和注浆量等参数,确保注浆效果。(3) 要根据实际情况确定注浆参数。注浆参数包括注浆孔的 间距、深度和角度等,根据地质条件和注浆效果进行调 整。除了注浆外,可以采用其他堵水技术。对较大的涌 水点,可用混凝土封堵、钢板封堵等方法。对特殊地质 条件下的隧道,用冻结法、帷幕灌浆法等技术进行堵 水。隧道防排水设计应遵循"防、排、截、堵"相结 合,因地制宜,综合治理的原则。在实际工程中,要根 据隧道的地质条件、水文情况和工程要求, 合理选择防 排水措施,确保隧道的安全、稳定和长期使用[3]。

3 隧道工程施工中的防排水关键技术

3.1 补充注浆堵水

第一,隧道开挖作业完成后,进入防水板施工前, 须对隧道的渗漏水情况进行全面而细致的检测。这是确 保隧道防水效果的初步, 也是至关重要的部分。对检 测出的渗漏水地段, 我们采用小导管注浆法进行堵水处 理。这种方式利用小导管直接将泥浆打入到泄漏部位, 并利用泥浆的凝固特点,建立牢固的防水屏障,可以有 效的封堵渗漏水处,从而减少了地下水在泄漏时形成的 水压差和流速。第二,在施工作业前和支护工程初期, 我们还需要先在坑身作业面周边,将小导管直接打入到 基础岩层内。这些小导管成为灌浆的管道, 使得泥浆可 以渗入到岩层的空隙和裂缝中。注浆泵产生的高压, 泥 浆被灌注在小导管内,从而沿着岩层空隙和裂缝进行渗 人或扩散。这过程实现了对渗漏点的精准封堵,还提高 了隧道的整体防水性能。第三, 注浆堵水技术的成功应 用, 离不开对注浆压力和注浆量的精确控制。合理的注 浆压力和注浆量,确保浆液能充分渗透到地层的各个角 落,形成完整的防水层。这提高了隧道的防水效果,还 为隧道的长期稳定运行提供了有力的保障。

3.2 施工缝、变形缝防水

(1)施工缝在隧道防水工程中属于薄弱之处,其处 理的优劣会对隧道工程的防水质量以及后续的使用寿命 产生直接影响。施工过程中应尽可能减少施工缝的设置 数量;因为施工缝的存在会增加渗水的风险,减少施工 缝能从源头上降低隧道出现防水问题的可能性。进行隧 道衬砌施工时,可以优化施工工艺和施工组织,合理安 排施工顺序,尽量减少不必要的施工缝。(2)对于无法 避免必须设置的施工缝,要保证其质量。要确保新、旧 混凝土之间粘结紧密且密实,这需要在施工时严格控制 混凝土的配合比和浇筑工艺。浇筑新混凝土之前,对旧 混凝土表面进行充分的清理和处理,去除表面的浮浆、 杂物等,保证新旧混凝土能够良好结合。应做好施工缝 处混凝土的振捣作业,适当的每点方式和混凝土振捣方 式,保证连接点混凝土的紧密性及其与相邻混凝土的贴 合度。这样才能避免雨水通过施工缝隙进入隧道内。 (3)对已设计的施工缝隙,通过各种型式的企口缝来 延长隧道的渗水距离。企口缝的设置能够提高水渗漏的 难度,进而改善了隧道的防水性能。而对于较为中心位 置的防水裂缝,则采用了膨胀式止水带的密封处理。膨 胀式止水带可以在遇水流过时扩张, 从而封闭出现的渗 水管道,从而使得防水裂缝的处理性能获得了最佳。通 过上述方法的结合使用,有效提高隧道施工缝的防水能 力,保障隧道工程的质量和使用寿命[4]。

3.3 涌水段防排水

(1) 隧道工程施工中遇到涌水段时, 防排水工作显 得尤为重要。涌水段的地质条件复杂, 地下水丰富, 若 处理不当,极易引发隧道渗漏、坍塌等安全事故。须采 取科学有效的防排水措施。(2)针对涌水段的防排水, 关键在于"疏堵结合"。一方面,通过注浆等方式对涌 水点进行封堵,减少地下水的渗出量。注浆材料应选用 强度高、耐久性好、抗渗性能优异的材料, 确保注浆效 果。注浆时, 应严格控制注浆压力和注浆量, 避免对隧 道结构造成破坏。另一方面,要合理设置排水系统,将 地下水引导至隧道外部。排水系统应包括横向排水管和 纵向排水管,以及集水井等设施。横向排水管应沿隧道 周边均匀布置,纵向排水管则负责将横向排水管汇集的 水流排出隧道。集水井应设置在隧道低洼处,便于收集 和处理积水。(3)在涌水段防排水施工过程中,加强监 测和预警。安装水位计、流量计等监测设备,实时监测 地下水的动态变化。发现异常情况,应立即采取措施进 行处理, 防止事态扩大。应加强现场安全管理, 确保施 工人员的生命安全和身体健康。隧道工程施工中的涌水 段防排水工作是一项复杂而重要的任务。只有采取科学 有效的措施,才能确保隧道的稳定性和安全性,为交通 运输事业的发展提供有力保障。

3.4 二次衬砌防水

二次衬砌是指隧道工程完成初期支护工作后,内侧 混凝土衬砌与初期支护构成的复合式衬砌。隧道二次衬 砌的施工工艺中实行防排水工程,有利于提高隧道防 排水的技术水平。隧道二次衬砌时在防水层平整铺设防 水板,施工人员切除防水板中外露的钢筋、锚杆等,采 用混凝土封堵防水板,防水板临近围岩的位置铺设无纺 布,保护好防水板在防排水工程中的质量,隧道拱部与侧墙位置铺设防水板时,必须要把防水板固定到铺设点,防水板的顶点距离隧道拱部约0.6cm,距离侧墙约1.1cm,如果防水板铺设位置不平整就要增加固定点的数量,提高防水板的固定水平,防水板上喷射混凝土。隧道防排水工程在二次衬砌工艺中铺设排水管,隧道中铺设了环形的盲沟,盲沟用于收集隧道两侧的引水,盲沟与横向排水管连接构成侧式排水系统,促使隧道中的水可以快速排出到洞外。隧道路面铺设了连接不同方向的排水管,此类多管连接的方法可以加快隧道排水的速度,预防渗漏水。

结语

综上所述,隧道防排水施工技术是确保隧道工程安全和稳定的关键。通过遵循"防"、"排"、"截"、"堵"的设计原则,并采用补充注浆堵水、施工缝与变形缝防水、涌水段防排水以及二次衬砌防水等关键技术,可以有效地解决隧道施工中的防排水问题。然而,随着工程环境的不断变化和技术的不断进步,我们仍需不断探索和创新隧道防排水施工技术,以适应更广泛、更复杂的工程需求。

参考文献

[1]蔡书洪.高原富水软岩隧道防排水施工技术研究[J]. 价值工程,2024,43(23):65-67.

[2]张明杨.高速公路隧道防排水施工技术研究[J].运输经理世界,2022(29):96-98.

[3]应文生.高速公路隧道防排水施工技术研究[J].四川建材,2022,48(1):122-123.

[4]何启锋.铁路隧道防排水施工技术研究[J].房地产导刊,2020(6):101-102.