油品污染控制策略在电力生产中的应用与实践

纪丽红

北京唐浩电力工程技术研究有限公司 内蒙古 赤峰 024000

摘 要:随着电力工业的快速发展,油品在电力生产中的应用日益广泛,如变压器油、汽轮机油、抗燃油等。然而,油品污染问题对电力设备的稳定运行和寿命产生了严重影响。本文旨在探讨油品污染控制策略在电力生产中的应用与实践,通过详细分析油品污染源、污染控制方法及其效果,为电力行业的油品污染控制提供理论支持和实践指导。

关键词: 电力生产; 油品; 污染; 控制策略

引言

油品污染是电力生产中不可忽视的问题。油品污染不仅会导致设备性能下降,还可能引发严重事故,影响电力系统的安全稳定运行。因此,研究油品污染控制策略在电力生产中的应用与实践具有重要意义。

1 电力油品污染源分析: 内外部因素共探

1.1 外部污染源

外部污染源主要源自油品所处的外部环境,其中空气中的灰尘、水分和微生物是主要的污染成分。灰尘颗粒细小且分布广泛,它们可能随风飘入油品储存区域,或在油品运输过程中通过未密封的接口进入油品内部。水分则可能因环境湿度大、雨水渗漏或储存容器密封不严而混入油品。微生物,如细菌、霉菌等,虽然体积微小,但它们的存在会加速油品的氧化和腐败过程。这些外部污染物的存在,不仅会降低油品的纯净度,还可能引发油品变质,进而影响电力设备的正常运行。

1.2 内部污染源

内部污染源则主要来源于电力生产设备本身。在设备运行过程中,由于部件的磨损、腐蚀或老化,会产生金属屑、橡胶颗粒、油泥等污染物。这些污染物在设备内部循环时,可能随油流进入油品中,导致油品的污染程度加剧^[1]。特别是金属屑和橡胶颗粒,它们不仅会对油品的绝缘性能造成损害,还可能加速设备的磨损和故障。因此,在电力设备的维护和管理中,需要高度重视内部污染源的控制和清理工作,以确保油品的纯净度和设备的稳定运行。

2 电力油品污染的影响

2.1 设备故障

油品污染是导致电力设备故障的重要因素之一。当油品中混入金属屑、橡胶颗粒、灰尘等杂质时,这些杂质会随油流在设备内部循环,对设备的摩擦部件造成额

外的磨损。长期下来,设备的磨损程度加剧,部件间的配合精度下降,甚至可能出现卡涩、断裂等严重故障。此外,污染物的存在还会加速油品的氧化和腐败过程,降低油品的润滑性能和绝缘性能,进一步缩短设备的使用寿命。因此,油品污染不仅增加了设备的维修成本,还严重影响了电力系统的稳定性和可靠性。

2.2 安全事故

油品污染还可能引发严重的安全事故,如火灾和爆炸。当油品中混入易燃易爆物质,如水分、微生物或某些化学物质时,这些物质在特定条件下可能引发油品自燃或爆炸。特别是在高温、高压或存在明火的环境中,油品污染导致的安全事故风险更高。一旦发生火灾或爆炸事故,不仅会对人员生命造成严重威胁,还会对电力设备和周边环境造成巨大破坏。因此,严格控制油品污染,确保油品的纯净度和安全性,是预防安全事故的重要措施。

2.3 能源消耗增加

油品污染还会导致设备运行效率降低,从而增加能源消耗和运行成本。当油品受到污染时,其润滑性能和传热性能会受到影响,导致设备在运行过程中产生更多的摩擦热和能耗。同时,污染物的存在还可能堵塞设备的散热通道,降低设备的散热效率,进一步加剧能源的浪费。此外,油品污染还可能导致设备频繁停机维修,增加停机时间和维修成本,从而降低电力系统的整体经济效益。因此,加强油品污染的控制和管理,提高油品的纯净度和运行效率,是降低能源消耗和运行成本的有效途径^[2]。

3 电力生产中油品污染控制策略

3.1 油品净化技术

在电力生产过程中,油品污染是一个不容忽视的问题,它直接关系到设备的稳定运行和系统的整体效率。

为了有效控制油品污染,油品净化技术成为了不可或 缺的重要手段。常见的油品净化方法包括过滤、离心、 聚结、静电、磁性、真空、吸附等。在众多油品净化方 法中,过滤和聚结技术因其高效、实用的特点而备受青 睐。过滤技术,作为最直接的净化方式,其核心在于利 用多孔隙的可透性介质,如滤网、滤纸等,对油品进行 物理拦截。这些介质能够精准地滤除悬浮在油液中的固 体颗粒污染物,如金属屑、灰尘等,从而确保油品的纯 净度。此技术的关键在于选择合适的过滤介质和过滤精 度,既要保证净化效果,又要避免对油品造成不必要的 压力损失。而聚结技术,则是一种更为精细的油品净化 手段。它巧妙地利用了不同物质间表面张力的差异,通 过特定的聚结元件,将油品中微小的油滴、水滴等聚集 成较大的颗粒,进而实现油水的高效分离。这种技术不 仅能够有效去除油品中的水分和微小杂质,还能在一定 程度上提高油品的抗氧化性能,延长其使用寿命。在实 际应用中, 过滤和聚结技术往往被结合使用, 以形成更 为完善的油品净化系统。通过多级过滤和聚结处理,可 以确保油品在进入设备前达到极高的纯净度,从而大大 降低设备磨损、故障率以及能源消耗。

3.2 油品监测与管理

在电力生产中,油品监测与管理是预防油品污染、 确保设备安全运行不可或缺的一环。为了实现对油品污 染的有效控制,必须建立一套科学、系统的监测与管理 机制。首先,油品监测是发现污染问题的"眼睛"。通 过定期对油品进行采样、检测和分析, 可以实时掌握油 品的污染状况,包括杂质含量、水分比例、酸值、氧化 安定性等关键指标。这些数据的及时获取, 为评估油品 性能、预测污染趋势提供了重要依据, 使得我们能够及 时发现问题并采取相应的处理措施, 如更换新油、进行 净化处理等,从而有效避免污染进一步恶化。其次,油 品管理则是预防污染发生的"防线"。建立一套完善的 油品管理制度,明确油品的储存、运输和使用流程,是 防止油品污染的重要手段。在储存环节, 应确保油库环 境干燥、通风良好,避免油品与空气直接接触;在运输 过程中, 应使用密封性良好的容器, 防止外界杂质进 入;在使用时,应严格遵守操作规程,避免油品受到不 必要的污染[3]。此外,加强油品管理的信息化建设也是 提升管理效率的重要途径。通过引入先进的油品管理系 统,可以实现对油品从入库到出库的全过程跟踪,确保 每一批油品的来源、去向和质量都有据可查。同时,系 统还能自动提醒进行定期监测和维护, 确保油品始终处 于最佳状态。

3.3 设备维护与升级

在电力生产流程中,设备维护与升级扮演着至关重 要的角色,它不仅是保障设备稳定运行的基础,更是减 少内部污染源、提升油品污染控制水平的有效途径。定 期对电力生产设备进行细致入微的维护和保养, 是确保 设备处于最佳工作状态的关键。这包括检查并紧固松动 的螺丝、清理积累的油垢和灰尘、润滑传动部件等。更 为重要的是,对于磨损严重或达到使用寿命的部件,如 密封件、轴承、滤网等,应及时进行更换。这一举措不 仅恢复了设备的原有性能,更从根本上减少了因部件磨 损而产生的金属屑、橡胶颗粒等内部污染物, 从而有效 降低了油品被污染的风险。与此同时,随着科技的不断 进步,采用先进的油品净化设备和监测仪器已成为提升 油品污染控制水平的必然选择。新型油品净化设备,如 高精度过滤器、聚结分离器等,能够更高效地去除油品 中的杂质和水分,确保油品的纯净度。而先进的油品监 测仪器,则能够实时监测油品的各项性能指标,如颗粒 度、水分含量、酸值等,为及时发现问题、采取应对措 施提供了有力支持。通过设备维护与升级的双重努力, 我们不仅能够减少内部污染源的产生,还能提升油品净 化和监测的精度与效率,从而构建起一道坚实的油品污 染防控屏障。这不仅有助于延长设备的使用寿命,提高 电力系统的稳定性, 更能显著降低因油品污染而导致的 经济损失和安全风险。

4 油品污染控制策略在电力生产中的实践建议

4.1 变压器油污染控制

引入高精度在线监测系统并设定阈值预警:建议安装具备高精度传感技术的在线监测设备,这些设备应能实时监测油中的颗粒度(如采用激光散射法测量)、水分含量(通过卡尔·费休滴定法或电容式湿度传感器检测)、酸值(利用电位滴定法)及介损(通过介电损耗测试仪测量)等关键指标。同时,根据变压器油的性能标准与运行经验,设定合理的指标阈值,并构建智能预警机制。一旦监测数据接近或超过阈值,系统立即发出预警信号,提醒维护人员及时采取措施,如启动净化程序或更换油品,以确保油品性能始终保持在最佳状态。

实施定期且针对性的深度净化流程:结合变压器的维护周期与油品污染状况,制定详细的深度净化计划。净化过程应采用聚结与过滤相结合的先进技术,如先通过聚结器使油中的微小颗粒与水分聚集成较大颗粒,再经过高精度过滤器(如纳米级过滤器)进行彻底过滤。此外,净化过程中还应注意油品的温度控制,避免过高温度导致油品性能下降。净化后,应对油品进行全面检

测, 确保各项指标均符合标准要求。

优化储存与运输管理,减少外部污染:建立严格的油品储存与运输管理制度,确保油品在储存过程中免受空气、水分及杂质的污染。储存区域应保持干燥、通风,并配备温湿度监控设备,确保储存环境稳定。同时,储存容器应采用耐腐蚀、密封性能好的材质,并定期进行检查与维护,防止油品泄漏或外部污染物侵入。在运输过程中,应使用专用且密封性强的油罐车或油桶,并在运输前后对容器进行彻底清洁与检查,确保油品在运输过程中不受污染。

科学选用并适量添加高效抗氧化剂:根据变压器油的具体类型与使用条件,科学选用高效且稳定的抗氧化剂。抗氧化剂的选择应考虑其与油品的相容性、抗氧化性能以及长期使用的稳定性。在添加抗氧化剂时,应严格按照产品说明书与行业标准进行操作,确保添加量适中且均匀混合。同时,应定期对油品进行抗氧化性能检测,根据检测结果及时调整抗氧化剂的添加量与频率,以延长油品使用寿命并减少因氧化产生的污染物。

4.2 汽轮机油污染控制

构建多级、高效过滤系统:在润滑油进入系统前,首先通过粗滤器,有效拦截油中的大块金属屑、橡胶颗粒及外来杂质,确保初步净化。随后,油液进入精滤器,采用更细的滤网或特殊材质的过滤介质,进一步去除微小颗粒,确保油品的清洁度达到更高要求。在关键润滑点前安装磁性过滤器,利用磁力吸附油中的铁磁性颗粒,特别是那些难以通过常规过滤手段去除的微小铁屑,从而保护设备免受磨损。

实施定期、全面的油品分析与净化流程:根据汽轮 机运行周期与油品特性,制定严格的采样计划,确保油 品状态得到及时监测。利用红外光谱分析、色谱分析、 颗粒计数等先进技术,全面评估油品的理化性质、污 染程度及磨损趋势。根据分析结果,灵活选择离线净化 (如静置沉淀、离心分离、真空蒸馏)或在线净化(如 连续过滤、电解再生)方式,高效去除油中的污染物, 恢复油品性能[4]。

加强设备维护,实施精准磨损监测:制定详细的维护计划,定期对汽轮机内部易磨损部件进行检查,及时更换磨损严重的部件,减少磨损产生的污染源。利用振动传感器实时监测汽轮机的振动情况,通过振动频谱分析,提前发现潜在的机械故障或磨损问题。定期对油液进行铁谱分析、光谱分析等,监测油中金属元素含量变化,判断设备磨损状况,为维修决策提供依据。

引入智能润滑管理系统,实现智能化管理:在汽轮机油系统中安装传感器,实时监测油品温度、压力、流量等关键参数,以及油品质量指标,实现数据的实时采集与传输。利用大数据技术,对收集到的数据进行深度挖掘与分析,预测油品性能变化趋势,提前预警潜在问题。基于分析结果,系统能够自动生成润滑管理建议,如净化计划、换油周期调整等,实现润滑管理的自动化与智能化。

结语

油品污染控制策略在电力生产中的应用与实践具有重要意义。通过采用先进的油品净化技术、建立完善的油品监测与管理制度以及加强设备维护与升级等措施,可以有效减少油品污染对电力设备的影响,保障电力系统的安全稳定运行。未来,随着科技的不断进步和电力行业的持续发展,油品污染控制策略将不断完善和创新,为电力行业的可持续发展提供更加坚实的保障。

参考文献

- [1]杜国光,孙冬,张博,等.变压器油中微生物的生长规律及污染控制措施研究[J].绝缘材料,2024,57(05):103-109.
- [2]窦鹏,周义凤,黄燕,等.电力用油污染度现场检测装置的研制与应用[J].液压气动与密封,2023,43(02):36-38.
- [3]关瑾,薛守洪,治卿,等.蒙西地区电力用油中颗粒污染度统计分析[J].设备管理与维修,2021,(Z1):16-18.
- [4]吴志杰.变压器油中典型污染颗粒分析技术研究 [D].东南大学,2021.