岩土工程中边坡稳定性分析及监测方法研究

陈彦春 时新华 浙江甬大建设有限公司绍兴分公司 浙江 绍兴 312300

摘 要:岩土工程中边坡稳定性分析及监测方法研究是一个至关重要的课题。本文首先介绍了边坡稳定性分析的重要性,然后阐述了边坡稳定性分析的方法,包括定性分析、数值模拟等。接着,本文介绍了边坡稳定性监测系统,包括边坡雷达监测、声发射监测等。最后,本文探讨了加强边坡稳定性控制的措施,包括优化设计、加强排水设施、加强监测和维护等。

关键词: 岩土工程; 边坡稳定性分析; 监测方法; 研究

引言:在岩土工程中,边坡的稳定性是一个关键问题。边坡的稳定性受多种因素影响,如土压力、水压力和坡体形状等。为了确保边坡的稳定性,需要采取一系列措施进行控制和监测。本文将探讨边坡稳定性分析的方法和监测系统,并提出加强边坡稳定性控制的措施。

1 岩土工程中边坡稳定性监测的重要性

在岩土工程中, 边坡稳定性监测具有非常重要的意 义。其主要目的在于确保边坡工程的安全和稳定, 防止滑 坡、崩塌等地质灾害的发生,保障人民生命财产的安全。 首先, 边坡稳定性监测可以帮助工程技术人员及时获取边 坡的稳定性状态信息,从而更好地进行设计和施工。在边 坡工程的设计阶段,需要通过稳定性监测来确定边坡的物 理性质和力学参数,如坡度、岩土性质、摩擦系数等。在 施工过程中, 稳定性监测可以帮助技术人员了解边坡的变 形和稳定性情况,及时调整施工方案,避免过度施工导致 边坡失稳。其次, 边坡稳定性监测可以有效地预防和减少 地质灾害的发生。在边坡工程中, 地质灾害的影响是非常 大的。一旦发生滑坡、崩塌等地质灾害,将会对周边地区 的人民生命财产造成巨大的损失。通过边坡稳定性监测, 可以及时发现边坡的异常情况,如变形、位移等,从而采 取相应的措施进行预警和防护,减少地质灾害的发生,保 障人民生命财产的安全[1]。最后,边坡稳定性监测对于工 程实践具有重要的意义。在岩土工程中,边坡的稳定性是 至关重要的。通过稳定性监测,可以了解边坡的实际情 况,及时发现和解决潜在的安全隐患。同时,稳定性监测 也可以为工程技术人员提供有效的数据支持,制定更加科 学合理的边坡设计和施工方案,提高工程质量和安全性。

2 边坡稳定性监测的内容

岩土工程中边坡稳定性监测是确保工程安全的重要 手段。以下是边坡稳定性监测的主要内容: (1)变形 监测:变形监测是边坡稳定性监测的重要内容之一。通 过对边坡表面及内部的变形情况进行监测, 可以了解边 坡的稳定状况。变形监测的方法包括地面测量、地下测 量、空间测量等。其中, 地面测量包括全站仪、水准仪 等测量仪器, 地下测量包括地下水位仪、锚杆测力计 等,空间测量包括GPS、卫星遥感等技术。(2)应力 监测: 边坡内部的应力状态是判断边坡稳定性的重要依 据。通过对边坡内部应力进行监测,可以了解边坡内部 的受力情况,预防灾害发生。应力监测的方法包括岩体 压力计、锚杆测力计、土压力计等。(3)地下水位监 测: 地下水位的变化对边坡稳定性有很大的影响。对地 下水位进行监测,可以了解边坡含水量的变化情况,及 时发现和处理可能出现的问题。地下水位监测的方法包 括地下水位仪等。(4)土壤力学性质监测:土壤力学性 质是影响边坡稳定性的重要因素之一。通过对土壤力学 性质进行监测,可以了解边坡土壤的性质和变化情况, 从而判断边坡的稳定性。土壤力学性质监测的方法包括 土壤含水量、土壤密度、土壤电导率等。(5)滑坡监 测:滑坡是边坡失稳的主要表现形式之一。通过对滑坡 进行监测,可以及时发现和预测可能出现的滑坡情况, 减少灾害发生。滑坡监测的方法包括地震波速仪、位移 传感器等。

3 边坡稳定性分析方法

3.1 地质调查法

地质调查法是边坡稳定性分析中非常重要的一个环节。通过地质调查,可以获取边坡的详细地质信息,包括土质、土层结构、地质构造、水文地质等情况。这些信息对于判断边坡的稳定性具有很重要的指导意义。在地质调查中,可以使用多种方法来获取边坡的地质信息,如钻探、挖坑、原位测试等。其中,钻探是一种常用的方法,可以通过钻机在边坡上钻取芯样,了解边坡的土层分布、土质情况等。挖坑则是在边坡上挖掘一定深度的坑洞,以

直接观察土层分布和地质构造。原位测试则是在边坡上进行各种现场试验,如载荷试验、剪切试验等,以获得边坡的力学性质和变形性质等信息。在获取边坡的地质信息后,可以通过对这些信息的分析,初步判断边坡的稳定性^[2]。例如,如果边坡的土质较软、土层结构复杂、存在不良地质条件,则边坡的稳定性可能较差。在地质调查中,还需要注意以下几点:(1)要注意调查人员的安全和健康,确保调查过程中不出现安全事故和职业病;(2)要注意调查的准确性和可靠性,确保所得数据的真实性和可重复性;(3)要根据实际情况合理选择调查方法和技术,避免盲目操作和浪费资源。

3.2 力学分析法

力学分析法是边坡稳定性分析中最为常见和重要的 一种方法。它基于力学原理,通过力学计算和分析,对 边坡的稳定性进行预测。静力分析是力学分析法中的一 种重要分析方法, 主要考虑边坡的静态荷载, 如边坡的 重力、土压力、水压力等。在静力分析中,通过建立力 学平衡方程,对边坡进行受力分析,确定边坡的稳定性 和可能发生的滑动面。除了静力分析,力学分析法还包 括动力分析。动力分析需要考虑动态荷载,如地震和风 荷载等。在动力分析中,需要考虑边坡在地震动和风荷 载作用下的振动效应, 以及这些效应对边坡稳定性的影 响。力学分析法的优点在于其物理意义明确,可以较为 准确地预测边坡的稳定性。但是, 力学分析法也存在一 定的局限性。首先,该方法需要假设边坡的力学模型, 而实际边坡的力学模型可能会因为复杂的地质条件、地 下水情况等因素而有所不同。此外, 力学分析法还需要 对边坡的力学性质进行准确测量和计算,这需要较高的 技术水平和精密的测量仪器。

3.3 数值模拟法

数值模拟法是一种基于计算机技术的边坡稳定性分析方法。通过数值模拟,可以模拟边坡的物理性质和行为,例如变形、受力、稳定性等,以便更好地理解和优化边坡的设计和施工过程。数值模拟法的优势在于其能够提供高精度和全面的分析结果。与传统的经验方法和理论分析方法相比,数值模拟法可以更加准确地预测和模拟边坡的稳定性,同时考虑多种因素对边坡稳定性的影响,如地质条件、水文条件、边坡形状、材料性质等等。此外,数值模拟法还可以对边坡的变形和受力情况进行分析,从而优化边坡的设计和施工。例如,可以模拟不同形状和坡度的边坡,以确定哪种设计更稳定、更经济。同时,数值模拟法还可以预测可能出现的灾害,如滑坡、坍塌等,从而提前采取预防措施。

4 岩土工程中边坡稳定性监测方法

4.1 构建适当的监测方案

岩土工程中的边坡稳定性是非常重要的,为了确保边坡的稳定性,适当的监测方案是必不可少的。首先,监测方案应该包括对边坡的定期测量。测量应该包括边坡的倾斜、沉降和位移。可以使用全站仪、水准仪和GPS等仪器进行测量。测量应该定期进行,以便及时发现边坡的稳定性问题。其次,监测方案应该包括对边坡的地质调查。地质调查应该包括边坡的土壤类型、土壤含水量、地下水位和地震活动情况等。这些信息对于评估边坡的稳定性非常重要。最后,监测方案还应该包括对边坡的稳定性非常重要。最后,监测方案还应该包括对边坡的稳定性非常重要。最后,监测方案还应该包括对边坡的稳定性非常重要。最后,监测方案还应该包括对边坡的稳定性,及时发现并处理任何可能的问题。同时,对边坡的维护也应该包括定期清理、填补和修复任何损坏或破损的地方,以确保边坡的稳定性。

4.2 边坡雷达监测

在岩土工程中, 边坡的稳定性是一个非常重要的考 虑因素。为了更好地监测和控制边坡的稳定性, 可以使 用雷达技术进行监测。首先,雷达监测技术可以提供 高精度的测量结果。雷达技术通过向边坡表面发射电磁 波,并测量反射回来的电磁波,来计算边坡表面的位移 和沉降。这种技术的精度非常高,可以达到毫米级别, 可以提供更加准确的数据,以便进行边坡稳定性的评估 和分析。其次, 雷达监测可以提供实时的监测数据。通 过实时监测边坡表面的位移和沉降, 可以及时发现任何 可能出现的稳定性问题[3]。这对于工程的安全性非常重 要,因为边坡的稳定性问题可能会对工程造成巨大的影 响。另外, 雷达监测还可以提供连续的监测数据。连续 的数据可以用于分析边坡的变形趋势和速度, 以及预测 未来的变形情况。这些信息对于工程的设计和优化非常 重要,可以帮助工程师更好地理解边坡的特性,并制定 更加合理的工程方案。

4.3 声发射监测系统

声发射监测系统是一种先进的无损检测技术,它通过传感器采集边坡岩土中的声发射信号,并对这些信号进行分析和处理,以获取边坡岩土中的应力、应变和损伤等信息。这种监测方法可以在不破坏边坡岩土的情况下,实现对边坡稳定性的实时监测和预警。在边坡稳定性声发射监测系统中,需要使用一些特殊的传感器和技术,如微型传感器、数字信号处理技术和计算机技术等。这些技术和传感器能够实现对声发射信号的高精度采集和处理,从而实现对边坡稳定性的高精度监测。

5 加强岩土工程中边坡稳定性控制

5.1 优化设计方案

在岩土工程中, 边坡的稳定性是至关重要的, 而优 化设计方案则是确保边坡稳定性的关键环节。首先,针 对边坡形式的设计,应该考虑到工程所在地的地质条 件、地形地貌以及周边环境等因素,选择能够对地质条 件和环境影响最小的设计方案。例如, 可以考虑采用自 然坡度、梯级坡度或者斜坡结合等多种形式, 根据具体 情况进行选择。其次,在结构设计方面,可以采取以下 优化措施:加强边坡的支撑结构,如加设挡土墙、锚 杆、锚索等;设置排水设施,包括排水沟、排水管道 等,以减少水压对边坡的影响;增加边坡表面的植被覆 盖,通过植物护坡来增加边坡的稳定性和抗风险能力。 在材料选择方面,可以选择高性能的材料,如高性能混 凝土、高强度钢材等,以提高边坡的安全性和稳定性。 同时,考虑采用新型材料,如复合材料、高性能纤维材 料等,以满足边坡对耐久性、抗风险能力的要求。最 后,应该充分考虑优化设计的综合效益,包括工程成 本、工期、环保等方面的综合效益。通过优化设计方 案,可以提高边坡的稳定性和安全性,减少工程的风险 和成本,实现工程与环境的和谐共存。

5.2 加强排水措施

岩土工程中,排水措施是确保边坡稳定性非常重要 的一环。水分的存在会对边坡产生多个方面的影响,如 土体的软化、滑坡、冲刷等, 因此, 加强排水措施是非 常必要的。首先,在边坡设计阶段,应该充分考虑排水 措施。可以根据边坡的地理位置、地形、地质条件等因 素,设计合适的排水系统。排水系统可以包括排水沟、 排水管道、集水井等设施,确保水分能够及时排出边坡 范围。其次,在边坡施工过程中,要注重排水设施的施 工。对于较陡的边坡,可以设置梯级排水沟,以减小水 分对边坡的影响。同时,要确保排水设施的质量和施工 的规范性,避免出现质量问题和施工缺陷。在运营管理 阶段, 也要加强对排水设施的维护和管理。对于出现淤 积、堵塞等情况的排水设施,要及时进行清理和修复, 确保其正常运行。同时,要加强对降雨等自然力的监测 和预警,及时掌握水分的变化情况,采取相应的应对措 施。除了设置排水设施外,还可以采用其他方法加强排 水效果。例如,可以在边坡表面设置植被、铺装等措施,以增加雨水的下渗和排放速度。同时,可以结合新型材料和技术,如渗透性路面、雨水花园等,提高排水的效率和质量。

5.3 定期监测和维护

在岩土工程中,通过定期监测和维护,可以及时发 现边坡的变形和失稳迹象,采取相应的措施进行维护和 加固,确保边坡的稳定性。首先,在边坡开挖和填筑 过程中,要采用实时监测技术,如地面沉降监测、坡体 变形监测等,及时获取边坡的变形数据。同时,要加强 对边坡的巡视和检查,确保边坡的稳定性。在边坡使用 过程中, 也要定期进行监测和维护。可以根据边坡的重 要性和具体情况,制定相应的监测和维护计划。监测内 容可以包括边坡的沉降、变形、裂缝、受力情况等。同 时,要加强对边坡表面的巡查和保养,避免出现表面裂 缝、冲刷等问题。对于出现异常情况的边坡,要及时采 取维护和加固措施。例如,对于出现沉降或变形过大的 边坡,可以进行加固处理,如喷浆、锚固等。在监测和 维护过程中,通过对监测数据的分析和处理,可以掌握 边坡的变形和失稳规律,为后续的维护和加固提供依 据。同时,可以结合数值模拟等方法进行预测和分析, 预测边坡的未来变化趋势,制定更加科学的维护和加固 方案。

结语:

总之,在岩土工程中,边坡稳定性的分析和监测是 非常重要的一项工作。通过选择适当的分析方法和监测方 法,可以更好地了解和控制边坡的稳定性情况,保障工程 的稳定性和安全性。同时,需要不断深入研究未来可能面 临的问题和挑战,以推动相关领域的发展和进步。

参考文献:

- [1]王余庆.岩土工程中边坡稳定性分析及监测方法分析[J].安徽建筑, 2019, 26 (04): 179-180.
- [2]魏小涛,林坚,罗财金.岩土工程中边坡稳定性分析以及检测方法研究[J].粘接,2022,49(03):109-112.
- [3]杨成德.岩土工程中边坡稳定性分析及监测方法研究[J].工程技术研究,2020,5(03):265-266.