测绘地理信息技术在国土空间规划中的应用

杨萍

北京舜土规划顾问有限公司宁夏分公司 宁夏 银川 750021

摘 要:测绘地理信息技术在国土空间规划中扮演着重要的角色。本文简要介绍了地理信息技术的应用领域与其未来发展趋势,分析了国土空间规划的重要性,并针对测绘地理信息技术在国土空间规划中的应用进行了深入探讨,以期为相关领域的发展提供参考。

关键词: 测绘地理信息技术; 国土空间规划; 应用

引言

随着社会经济的快速发展和城市化进程的加速,国 土空间规划成为了国家发展的重要战略。测绘地理信息 技术作为国土空间规划的核心技术之一,具有数据采 集、数据处理、空间分析和模拟、可视化表达等多种功 能,可以为国土空间规划提供全面、准确、可靠的数据 支持和工具。

1 测绘地理信息技术概述

1.1 测绘地理信息技术的应用领域

测绘地理信息技术是一门集地球信息科学、空间信 息科学、测绘学、地理学、计算机科学等多学科于一体 的综合性技术。该技术利用各种测量仪器和遥感技术, 通过对地表形态、自然地理要素、社会经济要素等进行 测量和采集, 为地理信息系统的建立和应用提供基础数 据和支持。其应用领域主要包括以下几方面:第一,测 绘地理信息技术在城市规划和管理中发挥着重要作用。 通过对城市地形、地貌、土地利用情况等信息的测量和 采集,为城市规划部门提供基础数据和支持,确保城市 规划的科学性和合理性。同时,利用地理信息系统技术 可以对城市管理进行数字化和智能化,提高城市管理的 效率和水平。第二,测绘地理信息技术可以用于自然资 源的调查和利用。通过这种技术, 我们可以获取高精度 的地理空间数据,了解自然资源的分布情况,评估资源 环境承载力,实现土地、水资源和矿产资源的精细化管 理。第三,测绘地理信息技术可以为环境保护和监测提 供数据支持。通过对环境要素的测量和采集,如大气污 染物的分布和浓度、水污染物的排放等, 为环境保护部 门提供数据支持,促进环境保护工作的开展[1]。第四,测 绘地理信息技术可以用于灾害监测和预防。通过对地质 灾害、水灾、火灾等灾害的监测和预警,建立灾害监测 系统,为灾害预防和应对工作提供数据支持。同时,利 用遥感技术可以对灾害损失进行评估和分析, 为灾害救 援和重建提供决策依据。

1.2 测绘地理信息技术的未来发展趋势

测绘地理信息技术在近年来得到了快速的发展,其 应用领域不断扩大,技术水平也不断提高。未来,随着 科学技术的不断进步和创新,测绘地理信息技术将会呈 现出以下几个发展趋势:第一,随着科技的不断发展, 高精度测量技术将会得到进一步的完善和提升。例如, 利用激光雷达、合成孔径雷达等技术手段, 可以实现厘 米级甚至毫米级的测量精度,为各种工程和应用提供更 加精确的数据支持。此外,高精度测量技术也将逐步实 现自动化和智能化,减少人为因素的干扰,提高测量效 率和精度。第二,人工智能和大数据技术是当前技术领 域的热点,它们的应用将会对测绘地理信息技术产生深 远的影响。通过人工智能算法对海量数据进行处理和分 析,可以挖掘出数据中蕴含的规律和信息,为各种应用 提供智能化的数据支持和决策依据。同时,大数据技术 的应用也将进一步提高测绘地理信息数据的处理效率和 精度,为各行业提供更好的服务。第三,3D激光扫描技 术是一种快速获取物体三维坐标和形状信息的技术,它 具有高精度、高效率和高分辨率的特点。未来, 3D激光 扫描技术将会在测绘地理信息领域得到广泛应用,例如 对复杂地形、建筑物等进行快速测量和建模,提高测量 效率和精度。并且,3D激光扫描技术也可以与人工智能 和大数据技术相结合,实现更加智能化和自动化的数据 处理和分析。第四,未来测绘地理信息技术将会更加综 合性和系统性。各种技术手段将会相互融合,形成更加 完整和高效的测量体系。例如,遥感技术、全球定位系 统、地理信息系统等技术的融合将进一步提高测绘地理 信息数据的精度和可靠性。同时, 测绘地理信息技术也 将会与互联网、物联网、云计算等技术手段相结合,形 成更加智能化和自动化的数据处理和分析系统, 为各行 业提供更好的服务。第五,未来的测绘地理信息技术将 会更加注重可持续发展观念的融入。通过技术手段的创新和应用,促进环境保护、资源利用等方面的可持续发展。例如,利用遥感技术对生态环境进行监测和评估,为环境保护提供数据支持;通过地理信息系统技术对土地资源进行合理规划和利用,促进资源的有效使用和可持续发展。

2 国土空间规划的重要性

国土空间是指国家主权与主权权利管辖下的地域空 间,包括陆地国土空间和海洋国土空间,它是国民生存 的场所和环境,包括陆地、陆上水域、内水、领海、 领空等。而国土空间规划是国家空间发展的指南、可持 续发展的空间蓝图,是各类开发保护建设活动的基本依 据。它通过对一定区域国土空间开发保护在空间和时间 上作出的安排,包括总体规划、详细规划和相关专项规 划[2]。它融合了主体功能区规划、土地利用规划、城乡 规划、海洋功能区划等空间规划,是国家规划体系的基 础。其重要性主要体现在以下几方面: (1)国土空间规 划是合理利用资源的重要手段。通过对土地、水资源、 矿产等自然资源的合理规划,可以避免资源的浪费和过 度开发,实现资源的可持续利用。同时,通过合理规划 空间布局,可以优化资源配置,提高资源利用效率。 (2) 国土空间规划是保障生态安全的重要手段。通过科 学合理的规划,可以保护自然生态系统和生物多样性, 防止生态环境的破坏和污染。同时,通过规划空间的绿 色发展, 可以增加生态空间和生态功能, 提高生态系统 的稳定性和可持续性。(3)国土空间规划是优化经济发 展的重要手段。通过对国土空间的合理规划和布局,可 以促进产业发展和经济转型升级,实现经济发展的可持 续性和协调性。同时,通过规划空间的优化,可以提供 适宜的经济发展环境和条件,吸引投资和人才,推动经 济发展和区域协调发展。(4)国土空间规划是维护社会 稳定的重要手段。通过科学合理的规划,可以保障居民 的基本生活需求和权益,提供适宜的居住和工作环境, 减少社会矛盾和冲突。同时,通过规划空间的公平和共 享,可以促进社会公平和和谐发展。(5)国土空间规划 是促进全球合作的重要手段。在全球化的背景下,各国 之间的合作越来越密切,而国土空间规划是各国合作的 重要领域之一。通过国际合作和协商,可以共同应对全 球性挑战和问题,如气候变化、资源短缺等,实现全球 可持续发展。

3 测绘地理信息技术在国土空间规划中的应用

3.1 数据采集与处理

测绘地理信息技术在国土空间规划中的应用广泛且

重要,其中数据采集与处理是其中一个关键环节。数据 采集与处理是国土空间规划的基础工作,其目的是获 取全面、准确、可靠的地理数据,为后续的规划和管理 提供数据支持。一方面, 地理信息技术可以通过各种技 术手段采集各种类型的地理数据,这些技术包括遥感技 术、全球定位系统、地理信息系统等。遥感技术利用卫 星或飞机等遥感平台获取地面目标的电磁波信息,如卫 星遥感影像等。全球定位系统则利用卫星信号接收机获 取地面目标的位置信息,如GPS数据等。地理信息系统则 利用计算机技术和数据库技术存储、管理、查询和分析 地理数据。另一方面, 在数据采集之后, 需要对数据进 行处理和分析[3]。数据处理主要包括数据清洗、整理和归 纳等。数据清洗旨在去除无效和错误的数据,确保数据 的准确性和完整性。数据整理是将采集到的原始数据进 行归纳和分类, 使其更便于分析和应用。数据分析则是利 用各种分析方法对数据进行深入挖掘,提取有用的信息。

3.2 空间分析能力

空间分析是地理信息技术中的一项核心能力, 它利 用地理信息系统(GIS)等技术手段,对地理数据进行空 间位置、空间分布、空间关系等方面的分析和处理。在 国土空间规划中,空间分析能力对于土地资源评价、自 然资源调查、环境质量评价等方面具有重要的作用。第 一,土地资源评价是国土空间规划中的一项重要工作, 旨在评估土地资源的利用潜力和适宜性。地理信息技术 可以通过对土地资源的分布、数量、质量等方面进行综 合评价,为国土空间规划提供科学依据。例如,利用地 理信息系统可以分析土地资源的分布特征,评估不同区 域的土地利用潜力和适宜性, 为国土空间规划提供数据 支持。第二,自然资源调查是了解和掌握自然资源分布 和储量的重要手段。通过遥感技术和地理信息系统等地 理信息技术手段,可以快速获取自然资源的空间分布和 储量信息,为资源开发和管理提供参考依据。例如,利 用遥感技术可以获取矿产资源的分布信息,利用地理信 息系统可以分析矿产资源的储量和开采潜力,以提高矿 产资源开发和管理的决策能力。第三,环境质量评价是 评估环境状况和环境保护效果的重要手段。利用地理信 息技术可以对环境质量进行综合评价和分析, 为环境保 护和治理提供保障。例如,利用遥感技术可以获取大气 污染物的空间分布信息,利用地理信息系统可以分析大 气污染物的来源和扩散规律, 以提高环境保护和治理的 效果。

3.3 决策支持与优化

地理信息技术可以通过对土地利用现状、资源分布

情况等信息的分析,为决策者提供决策支持。在国土空 间规划中,决策者需要面对的往往是复杂的地形地貌、 气候条件、资源分布等,这些因素都直接影响到规划的 合理性和可行性。地理信息技术通过对这些因素进行综 合分析,可以提供更加全面、准确的决策依据。例如, 利用地理信息系统可以对土地利用现状进行详细的分 析,包括土地的用途、面积、地势、土壤质量等,通过 这些数据,决策者可以更好地了解土地资源的现状和特 点,为国土空间规划提供科学依据。并且,地理信息技 术还可以通过对历史数据和未来预测数据的分析,为决 策者提供预测和预警。另外, 地理信息技术还可以通过 模拟预测和优化设计等手段,为决策者提供优化方案。 在国土空间规划中,往往需要对多个方案进行比较和选 择, 而地理信息技术可以提供更加科学、合理的规划方 案。例如,在城市交通规划中,决策者需要选择合适的 交通路线和交通方式。利用地理信息系统,可以对不同 的交通规划方案进行模拟和预测, 比较各种方案的优劣 和效益。通过对不同方案的比较,决策者可以更加全面 地了解各种方案的优缺点,从而选择出最优的交通规划 方案。

3.4 立体式输出应用

地理信息技术在国土空间规划中的应用非常广泛,其中之一是立体式输出应用。这种应用方式可以通过三维建模和可视化技术,将地理信息以更加直观、立体的方式呈现出来,为国土空间规划提供更加全面、准确的数据支持和分析结果。首先,三维建模技术是地理信息技术中的一项重要技术,可以通过对地形地貌、建筑物、植被等地理信息的采集和处理,建立三维模型,以更加直观的方式呈现出现实的地理状况。在国土空间规划中,三维建模技术可以应用于城市规划、土地资源管理、环境保护等多个方面^[4]。例如,在城市规划中,三维

建模技术可以用于建立城市的三维模型,全面呈现城市的建筑、道路、绿化等各个方面的实际情况。这可以为城市规划提供更加准确的数据支持和分析结果,帮助决策者更加科学地进行城市规划。同时,还可以通过动画方式呈现土地利用变化的历程,帮助用户更加全面地了解土地利用变化情况。其次,卫星遥感技术是获取国土空间地理信息的重要手段之一。通过卫星遥感技术,可以获取高分辨率的影像数据,这些数据可以与GIS结合,实现国土空间利用的动态监测和管理。利用高分辨率的影像数据,可以提取出更多的地理信息,例如地形、地貌、水文等,从而为国土空间规划提供更为准确的数据参考。

结语

综上所述,利用数据采集、数据处理、空间分析和模拟等技术手段,可以实现对国土空间资源和要素的全面、准确、动态掌握,为国土空间规划提供及时、准确的数据支持和工具。未来,随着技术的不断发展和进步,测绘地理信息技术将会更加智能化、自动化和精细化,为国土空间规划提供更加高效、精准的解决方案。同时,我们也应该看到,测绘地理信息技术的应用和发展还需要政策、法规、人才等多方面的支持和保障,需要政府、企业、学术界等各方面的共同努力。

参考文献

- [1]王伟,金贤锋.面向国土空间规划的测绘地理信息技术及数据成果服务应用展望[J].测绘通报,2020,(12):58-64.
- [2]王佳.测绘地理信息大数据背景下的国土空间规划应用研究[J].工程建设与设计,2020,(18):237-238.
- [3]马春花.地理信息大数据在国土空间规划中的应用分析[J].农业与技术,2020,40(12):170-171.
- [4]秦萧,甄峰,李亚奇,等.国土空间规划大数据应用方法框架探讨[J].自然资源学报,2019,34(10):2134-2149.