宁夏干旱地区调蓄水库混合料筑坝设计要点分析

贾 亮

宁夏水利水电勘测设计研究院有限公司 宁夏 银川 750000

摘 要:宁夏干旱地区缺少良好的天然筑坝材料,外运筑坝土料又不够经济,通过对当地已有材料进行制备,满足规范中筑坝土料的要求后用于坝体填筑。本文以宁夏已建调蓄水库为案例,通过对该工程难点分析,坝体混合料设计,对不同比例坝体混合料渗流、稳定计算,最终确定混合料中细砂和泥岩的掺和比例,为类似工程中混合料坝体填筑设计提供参考。

关键词:混合料; 坝体填筑; 掺和均匀

1 工程概况

宁夏处于沙漠边缘,降雨量不足,气候干旱,地层主要以粉细砂、泥岩、砂岩等为主,缺少良好的天然筑坝材料,外运筑坝土料又不够经济,只能利用当地已有材料进行制备,满足规范中对筑坝土料的要求。本文以宁夏某已建调蓄水库为案例进行分析。案例中调蓄水库设计总库容170万m³/s,采用半挖半填形成围坝的方式形成水库,坝轴线长1.6km,坝顶宽度为6.0m,上游坝坡坡比为1:2.75,下游坝坡坡比为1:2.5,设计水深10.7m,设计库深12.2m,最大填方高度为12m,工程总填筑量为65万m³,备料土77万m³。

2 工程地质

工作区内主要出露地层有细砂、泥岩、泥质砂岩、砂质泥岩等。根据《中国地震动参数区划图》 (GB18306-2015)划分,工作区的基本地震动反应谱特征周期为0.45s,基本地震动峰值加速度值为0.10g,相应地震基本烈度为WI度。

3 工程设计难点

工程区为干旱地区,地层上部为细砂,下部为泥岩,泥岩具有膨胀性、干缩湿涨的特点^山,不能直接用于筑坝;细砂为无粘性土,且渗透系数较大,也不能直接用于筑坝;土方工程量较大,外运土料又不够经济,土料的来源及储备情况是本工程的主要设计难点。

4 筑坝材料设计

一般情况下,调蓄水库大坝均采用碾压式当地材料坝,设计考虑采用库区开挖的泥岩及细砂制备后作为筑坝材料,结合现场泥岩、粉细砂土料分布情况,坝体回填土料用粉细砂与泥岩掺和后进行填筑^[2],分别设计以下三种情况,分别为:

作者简介: 贾亮,1989, 男,汉,宁夏银川,工程师,硕士学位,水工设计

- (1)采用体积比50%粉细砂和50%泥岩填筑;
- (2) 采用体积比70%粉细砂30%泥岩填筑:
- (3) 采用全粉细砂进行填筑填筑;

以上比例掺和后的筑坝土料还需渗流、稳定计算确定最终掺和比例。根据土石坝设计规范^[1],调蓄水库大坝填筑设计压实度不小于0.97,回填前需对坝基处杂草、腐殖土进行清理,大坝填方段坝基下1.0~3.0m厚粉细砂均挖除后再进行回填。土料制备时,大块泥岩应进行机械破碎,粒径不大于50mm,混合料^[3]应掺和均匀。

5 坝体渗流、抗滑稳定分析

5.1 计算软件及依据

本次计算采用Autobank7.51软件进行坝体渗流计算分析,坝体稳定计算采用毕肖普法进行计算。

5.2 计算模型及参数

选取坝体最大填方断面(B0+950)进行计算,坝顶宽为6m,坝体迎水面坡比1:2.75,背水面坡比为1:2.5。计算模型在上、下游方向各延伸20m,坝基深度方向取20m作为计算范围,计算模型见图1。

本次对坝体填土①(体积比50%粉细砂50%泥岩)、坝体填土②(体积比70%粉细砂30%泥岩)和坝体填土 ③(粉细砂)三种坝体填土土质条件下大坝渗流稳定、坝坡抗滑稳定进行计算。根据调蓄水库工程地质勘察资料,本次设计坝体填筑土料为粉砂、泥岩、砂岩混合料为主(料场),坝基岩层土体以粉细砂、砂壤土、泥岩为主。将复合土工膜厚度放大500倍进行计算,放大后复合土工膜渗透系数为5×10°(cm/s),土层材料参数、土层允许水力比降如下表所示:

5.3 计算工况

渗流计算工况划分为两种工况:工况1,设计水位=1408.00m;工况2,库水位骤降工况,将库水位从设计水位1408.00m降至设计淤积高程1397.80m,将库区水位由设

计水位降至设计淤积高程需337h。稳定计算工况考虑正常 运用条件 II (设计水运用条件(设计水位1408.00m工况)、非常运用条件 II 分别计算土工程(施工期)、非常运用条件 II (水位骤降工况)、和非常 流、坝坡抗滑稳定。

运用条件 II (设计水位1408.00m+地震工况)四种工况。 分别计算土工膜完整和土工膜破损条件下各工况渗 流 切坡拉滑稳定。

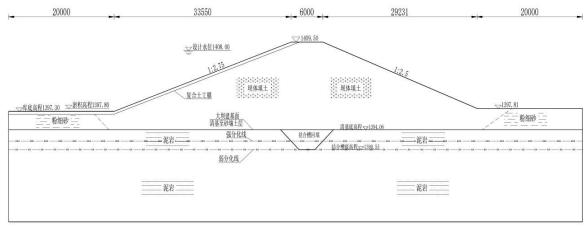


图1 调蓄水库坝体最大填方断面计算模型图

表1 各土层材料参数及允许水力比降表

材料名	Kx(cm/s)	Ky(cm/s)	渗透变形类型	临界水力比降	允许水力比降
坝体填土①(体积比50%粉砂50%泥岩)	2.07×10 ⁻⁵	2.07×10 ⁻⁵	流土	1.10	0.55
坝体填土②(体积比70%粉砂30%泥岩)	1.91×10 ⁻⁵	1.91×10 ⁻⁵	流土	1.10	0.55
粉细砂	5×10 ⁻⁴	5×10 ⁻⁴	流土	0.70	0.35
砂壤土	1.34×10 ⁻⁵	1.34×10 ⁻⁵	流土	1.06	0.53
泥岩	3×10 ⁻⁴	3×10 ⁻⁴	流土	1.20	0.6
截渗槽回填粘土	1.88×10 ⁻⁵	1.88×10 ⁻⁵			
复合土工膜	5×10 ⁻⁹	5×10 ⁻⁹			

表2 坝体与坝基材料指标表

土层	容重(KN/m³)	浮容重(KN/m³)	有效应力c'(KPa)	有效应力φ′(°)
坝体填土①(体积比50%粉细砂50%泥岩)	18.29	8.29	26.4	23.7
坝体填土②(体积比70%粉细砂30%泥岩)	19.11	9.11	20.5	24.3
粉细砂	15.00	5.00	0	23
砂壤土	20.15	10.15	29	20
泥岩	20.35	10.35	44	26
截渗槽回填粘土	19.31	9.31	49.9	20.9
混凝土防渗墙	25	15	31.5	53

5.4 计算结果分析

析,得到渗流、抗滑稳定计算结果,具体如下表所示。

通过采用Autobank7.51软件进行渗流有限元计算分

表3 渗流计算结果表

坝体填土 土工膜状况		工况划分	坝体单宽渗流量	坝体日单宽渗流量	下游出逸点	出逸处允许
	$(m^3/s/m)$		$(m^3/d/m)$	水力比降	水力比降	
坝体填土①(体 积比50%粉细砂 50%泥岩)	土工膜完整	设计水位(1408.00m)	7.60×10 ⁻⁸	0.0065	0.011	
		水位骤降(1408.00m 降至1397.80m)	1 7 60×10°~1 83×10°° 1 0 007~1 58×10°°		0.011~0.001	0.55
	土工膜破损	设计水位(1408.00m)	5.91×10 ⁻⁶	0.51	0.531	0.55
		水位骤降(1408.00m 降至1397.80m)	5.95×10 ⁻⁶ ~6.05×10 ⁻¹⁰	0.51~5.23×10 ⁻⁵	0.531~0.02	

续表:

切体填土 土工膜状况		工况划分	坝体单宽渗流量	坝体日单宽渗流量	下游出逸点	出逸处允许
	エルギカ	$(m^3/s/m)$	$(m^3/d/m)$	水力比降	水力比降	
		设计水位(1408.00m)	7.60×10 ⁻⁸	0.0065	0.0065 0.011	
坝体填土②(体 积比70%粉细砂— 30%泥岩)	土工膜完整	水位骤降(1408.00m 降至1397.80m)	7.60×10 ⁻⁸ ~1.52×10 ⁻¹¹	10 ⁻¹¹ 0.007~1.31×10 ⁻⁶ 0.011~0.0		0.55
	土工膜破损	设计水位(1408.00m)	5.85×10 ⁻⁶	0.51	0.535	0.55
		水位骤降(1408.00m 降至1397.80m)	5.8910 ⁻⁶ ~4.83×10 ⁻¹⁰	0.51~4.17×10 ⁻⁵	0.535~0.02	
	土工膜完整	设计水位(1408.00m)	7.62×10 ⁻⁸	0.007	0.004	
坝体填土 (粉细砂)		水位骤降(1408.00m 降至1397.80m)	7.62×10 ⁻⁸ ~5.02×10 ⁻¹¹	0.007~4.34×10 ⁻⁶	0.004~0.002	0.25
	土工膜破损	设计水位(1408.00m)	1.62×10 ⁻⁵	1.40	0.51	0.35
		水位骤降(1408.00m 降至1397.80m)	1.72×10 ⁻⁵ ~2.37×10 ⁻⁸	1.48~0.002	0.51~0.001	

表4 坝坡抗滑稳定安全系数计算成果表

坝体填土	土工膜状况	工况	上游坝坡	下游坝坡	规范要求最 小安全系数	是否 满足	
坝体填土①(体 积比50%粉砂		正常运用条件 (设计水位1408.00m工况)	4.06	1.89	1.25		
		非常运用条件 I (施工期)	2.35	2.27	1.15	是	
	土工膜完整	非常运用条件 I (水位骤降工况)	2.07	1.89	1.15	定	
		非常运用条件Ⅱ (设计水位1408.00m+地震工况)	2.90	1.59	1.10		
50%泥岩)		正常运用条件 (设计水位1408.00m工况)	2.90	1.55	1.25		
	土工膜破损	非常运用条件 I (施工期)	2.31	2.23	1.15	是	
		非常运用条件 I (水位骤降工况)	1.79	1.75	1.15	疋	
		非常运用条件Ⅱ (设计水位1408.00m+地震工况)	2.08	1.30	1.10		
	土工膜完整	正常运用条件 (设计水位1408.00m工况)	2.21	1.25	1.25		
		非常运用条件 I (施工期)	1.64	1.37	1.15	是	
		非常运用条件 I (水位骤降工况)	1.33	1.25	1.15	定	
坝体填土②(体 积比70%粉砂		非常运用条件 II (设计水位1408.00m+地震工况)	1.96	1.10	1.10		
30%泥岩)		正常运用条件 (设计水位1408.00m工况)	1.89	1.09	1.25	否	
		非常运用条件 I (施工期)	1.74	1.67	1.15	是	
		非常运用条件 I (水位骤降工况)	1.36	1.37	1.15	是	
		非常运用条件 II (设计水位1408.00m+地震工况)	1.40	0.91	1.10	否	

续表:

						^~~.
坝体填土	土工膜状况	工况	上游坝坡	下游坝坡	规范要求最 小安全系数	是否 满足
		正常运用条件 (设计水位1408.00m工况)	2.361	0.94	1.25	否
型体填土 (粉细砂) 土工膜破损	1. 工時令跡	非常运用条件 I (施工期)	1.33	1.06	1.15	否
	工工脵元整	非常运用条件 I (水位骤降工况)	1.03	0.94	1.15	否
		非常运用条件 II (设计水位1408.00m+地震工况)	1.68	0.80	1.10	否
		正常运用条件 (设计水位1408.00m工况)	0.84	0.28	1.25	否
		非常运用条件 I (施工期)	1.17	1.06	1.15	否
	工工限恢须	非常运用条件 I (水位骤降工况)	0.60	0.58	1.15	否
		非常运用条件Ⅱ (设计水位1408.00m+地震工况)	0.50	0.24	1.10	否

6 工程运行情况

目前工程已完成施工,开始正常蓄水。施工过程中 压实度检测均满足设计(0.97)要求;蓄水后,通过坝体 渗流、变形监测数据显示,水库坝体并无漏点及沉降, 水库运行情况良好。

7 结论

(1)当坝体填土为①(体积比50%粉砂50%泥岩)时,调蓄水库坝体渗流稳定及大坝边坡抗滑稳定均满足规范要求;当坝体填土为②(体积比70%粉细砂30%泥岩),调蓄水库坝体渗流稳定满足规范要求,但部分工况下大坝边坡抗滑稳定安全系数小于规范允许值,大坝边坡抗滑稳定不满足规范要求;当坝体填土为③(粉细砂)时,坝体渗流稳定及大坝边坡抗滑稳定均不满足规范要求。

- (2) 坝体填筑料掺和比例在体积比50%粉砂50%泥岩时,渗流、抗滑稳定计算各种工况下均能满足要求;施工掺和更方便,有利于施工控制掺和质量。
- (3)筑坝材料采用体积比50%粉砂50%泥岩掺和时,应采用筛分法确定土料中黏粒含量,应进一步确定筑坝土料的掺和均匀性,坝体保证填筑质量。

参考文献

- [1]《碾压式土石坝设计规范》(SL274-2020.
- [2]宋杨,水利工程中超大粒径土石混合料填筑体稳定性研究.河北省,河北水利电力学院,2018-01-03.
- [3]王梦竹.土石坝填筑施工技术在小型水库施工中的应用[J].珠江水运,2023(05):77-79.DOI:10.14125/j.cnki. zjsy.2023.05.018.